

Advanced Diesel Common Rail Injection System for Future Emission Legislation

Roger Busch

Common Rail System Engineering for PC Diesel Systems Robert Bosch GmbH

Outlook

Drivers and Challenges for PC and LDT - Diesel

• Overall System Requirements for Advanced Common Rail

• BOSCH 4th Gen Common Rail Injection Systems

• Potential Evaluation of 4th Gen Common Rail Systems

Diesel System Innovations

BOSCH

source: KBA Germany

Air System

- Super Charging
- LP/HP EGR

Combustion Process

- Bowl Design, Compression Ratio ...
- Combustion Signal Control
- Optimized Nozzle Technology

EGT

- DPF
- DPF+NSC
- System Control

Outlook

• Drivers and Challenges for PC and Truck - Diesel

Overall System Requirements for Advanced Common Rail

• BOSCH 4th Gen Common Rail Injection Systems

• Potential Evaluation of 4th Gen Common Rail Systems

FIE Requirements Evaluation

Sensitivity analysis of important injection parameters for the engine performance

Feature:

- **1** Pilot injection (number, time gap, quantity, tolerance)
- **2** Opening pressure, influence of pressure ramp, gradient
- 3 Max. injection pressure, influence of small nozzle holes
- 4 **Pressure gradient during closing**
- **5** Post injection (near, late, influence of pressure level)
- 6 Opening and closing speed of the needle

Potential Analysis for PC an LDn = 2000/min. Combustion Process and FIE BMEP = 6,5 barEuro3 NO_X [g/kg] Particles / NO_X = 1/10 6 Euro4 5 4 3 2 Euro4/3 1400 kg 0 Concept C Concept G Concept H Concept Concept K Concept L ConceptB . Concept M inertia weight 2pt C Concept D Concept F Concept C series applications concept A Concept A

- fast needle opening velocity but: injection rate ↓ during ignition delay
 injection rate ↓ after start of combustion
- → "vario" nozzle→ rate shaping

"Optimal" Shape for PC Engines

DEER 2004 4th Gen Diesel Common Rail Injection System

CRS System Requirements for PC - Summary

⇒ full flexible timing of multiple injection events

⇒ full flexible choise of injection pressure in the engine map

⇒ small precise and stable in

still valid and well - known from series Common Rail technology, gaining goals on noise, power, Euro4 - emission and maintaining EGT

CRS System Requirements for PC - Summary

Outlook

• Drivers and Challenges for PC and Truck - Diesel

Overall System Requirements for Advanced Common Rail

BOSCH 4th Gen Common Rail Injection Systems

• Potential Evaluation of 4th Gen Common Rail Systems

Piezo-Injector with Coaxial-Vario-Nozzle CRI4-PV

Injector -Charakteristics

- Basis: CRI3
- Systempressure 1600/1800 bar
- Space requirement as CRI3
- One row for part load
- Both rows for full load

Vario Nozzle Strategies

Avoidance of PI

(except for cold engine and idle)

Emission reduction

Reduction of Q_{HYD}

Noise reduction

Indepentantly switchable 2nd row

of spray holes

appropriate power output

Advanced Common Rail Systems for PC

CRS 4 - <u>Hydraulically Amplified Diesel Injection System</u>

• Functions

- ⇒ Rail Pressure up to 1350 bar
- ⇒ <u>HAD Injector</u> with hydraulic pressure amplification
- ⇒ sophisticated closed loop fuel metering control
- ⇒ innovative, delivery controlled high pressure pump platform
- Advantages
 - ⇒ small Q_{hyd} and passive rate shaping to pull down raw emissions and noise @ part load
 - ⇒ max pressure > 2200 bar @ spray hole to reach high power and reduce raw emissions @ full load (US 06, e.g. LD in EU)

Hydraulically Amplified Diesel Injector (HADI)

Injector-Characteristics

- System pressure up to 1.350bar
- Pressure amplification ≈1:2
- Pressure at the nozzle up to 2.200bar
- Pressure/lift controlled needle
- Ramp rate shape
- Space requirements as CRI2
- Conventional nozzle

BOSCH

Pressure amplifier module

Nozzle module

CRS - Roadmap Pkw und Light Duty < 6t

Advanced Control Functions

Outlook

• Drivers and Challenges for PC and Truck - Diesel

• Overall System Requirements for Advanced Common Rail

• BOSCH 4th Gen Common Rail Injection Systems

Potential Evaluation of 4th Gen Common Rail Systems

Diesel System Optimization

EGT=exhaust gas treatment

FIE= fuel injection equipment

Diesel Challenges - Emission Legislation PC

Europe

- next step in legislation: Euro 5
- NEFZ cycle *

Scenario 1:

- PM = 0,01 g/km
- NOx = 0,2 g/km
- CO/HC = 1,0/0,05 g/km

- PM = 0,0025 g/km**
- NOx = 0,08 g/km**
- CO/HC = 1,0/0,05 g/km

* no high load test under discussion

** UBA - Requirement 06.2003

Euro 5 - Estimation for PC

Euro 5 Estimation, Vehicle Inertia Mass: 1400 kg, out of best single cylinder results with series and prototype

Euro 5 Estimation, Vehicle Inertia Mass: 1800 kg, out of best single cylinder results with series and prototype

Summary PC

- Additional EGT effort scales with CRS performance, vehicle weight and desired power output
- Facing a weak Euro 5 scenario (NOx = 0,2 g/km) it's most likely to fulfill the limits w/o DeNOx measures, also with "Euro 4 engines"
- Facing a severe Euro 5 scenario (NOx = 0,08 g/km) and "Euro 4 engines" a DeNOx - measure seems to be mandatory. The DeNOx effort can significantly be reduced using high tech CR - systems
- First results out of advanced "Euro 5 engine" technology combined with engine measures (e.g. pHCCI, TC²) and CRS4 FIE shows tremendeous improvement in NOx reduction

- The biggest challenge for future Diesel technology are the continiously strengthenend emission targets
- Key factors like power output, vehicle weight and the engine itself scaling the effort on exhaust gas treatment side
- 4th Gen Common Rail Injection Systems combinded with modern Diesel engines provide lowest raw emissions and fuel consumption values.

© Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

BOS

Thank you for your attention.

BOSCH