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Objectives

= Bridge the gap between fundamental HCCI physics and chemistry
considerations and applied models

— Balance model fidelity with computational expediency and ultimate goal in
mind

= Demonstrate a cascade sequence where high fidelity models and
experiments feed phenomenogical models appropriate for systems
analysis

= Apply system models to assess candidate control schemes
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Approach

Experiments
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Engine University Consortium Set-Ups
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Local Heat Fluxes
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Concept of Modified Woschni Correlation

Models need to be calibrated to provide

accurate total heat loss
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= Classic Woschni underpredicts heat
transfer during compression and
leads to unrealistic ignition
predictions

= Modified Woschni heat transfer
model:

—Original: A, =1
—Modified: A, = 1/6

N= Fuwowr 3.26-B02. p08.T 05 08
W= ACS, + AC, Yt (p_p)
7 BWw
C,=2.28+0.308 5 55 C, =0.00324
p
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Experimental Burn Rate Data
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Modeling Approaches for HCCI Engines

Detailed
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Initial Modeling Approach:
Sequential CFD + Multi-zone Model

Open-cycle calculation
using Kiva-3V Calculation of combustion event using

- Multi-zone model with Temperature Zones only
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Sensitivity to Transition Timing

= Calculations at LLNL showed that the point of transition from KIVA to
the multi-zone code can affect the results (SAE 2005-01-0115)

— Imposed @ distribution on a 2D coarse grid (Fuel CH,)

— Solution obtained using sequential multi-zone approach compared against
detailed solution (KIVA-3V linked with Chemkin)

— Implication: Temperature and composition stratification is important
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Naturally Occurring Thermal Stratification

Collaboration with Sjéberg and Dec (Sandia) - SAE 2004-01-2994

Temperature field at TDC
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Coupling of KIVA-3V with Multi-Zone Model (KMZ2)

Temperature and ¢ distributions
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Validation of Fully Coupled Kiva-3V with
Multi-Zone Model
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= The new model gives results that match very well the “exact” solution
obtained by solving for detailed chemistry in every cell

= Computational time is reduced significantly (~90% for 10,000 cells)
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Numerical Experiments: KMZ generated “data”

= Run T sweeps of KMZ model for various operating parameters
= Generate burn angles as function of ignition timing, as well as
other variables
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System Studies Approach

= Use GT-Power as platform for system modeling

= Use experiments and CFD models to provide simplified
combustion models with correct trends for ignition, burn rates and
combustion efficiency

= Develop single-cylinder engine model with manifolds including
thermal system submodel

= Explore implementation issues at multi-cylinder and vehicle level,
especially related to thermal transients

Heat Heat Heat Heat
transfer transfer release transfer
coefficient coefficient rate coefficient

Tign(MS) =1.3x107 - P 47077 57 141 exp(33700/ Rigay ot /1)
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Bridging the Gap Between HCCI Fundamentals and Applied Models

Automoltive
Laboratorny



Thermal Transients — Simulating the UM Engine
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Thermal Transients — Challenges

= Stable operation possible at steady state thermal points
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= Transient operation unsatisfactory
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Transient Compensation

= Hot-to-cold compensation possible by reducing rebreathing lift or
increasing P, (both decrease EGR)
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= Cold-to-hot compensation not achievable (not enough EGR heat is
available)
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Thermal Transients - Implications

10

= HCCI regime is shifted
depending on direction of @
transient

= Hot-to-cold will extend the low
load HCCI region
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Future Work

= Refine modeling approaches and validate them against optical and metal
engine measurements — emphasize DI, stratified operation

= Extract knowledge developed from detailed CFD + comprehensive
chemistry models and capture it into practical correlations compatible
with “smart” phenomenological single-zone models

= Provide a single-cylinder module to multi-cylinder system level, controls-
oriented simulations

= Use models to develop strategies for HCCI engine in-vehicle operation
with alternative fuels
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