

Model-Based Transient Calibration Optimization for Next Generation Diesel Engines

Chris Atkinson, Atkinson LLC and Marc Allain & Craig Savonen, Detroit Diesel Corporation

August 2005

11th Annual Diesel Engine Emissions Reduction (DEER) Conference

A DaimlerChrysler Company

Presentation Topics

- Diesel Engine Technology Trends
 - **Calibration Requirements**
- Model-Based Calibration
 - **Transient Engine Model Development**
 - **Rapid Transient Calibration Optimization**
 - Results
 - **Model-Based Control and Diagnostics**
 - Summary

11th Annual DEER Conference August 2005 ©2005 Detroit Diesel Corporation. All Rights Reserved.

0

Diesel Engine Technology Trends

- Ever Decreasing Emissions Requirements
- Ever Increasing Fuel Economy Demands
- Increasing Mechanical and Electronic Complexity of Engines
- Cost Reduction Demands
- Reduced Product Engineering Development Cycles
 Increasing Demands on Transient Test Facilities

Technical Challenges

- Rapidly Increasing Complexity of Engine Control
- Integration of Aftertreatment Control
- New Low Temperature Combustion Regimes
- Emissions Testing FTP, In-Use, NTE
- 435,000 Mile Useful Life Requirements
- HD OBD Requirements
 - All Of These Lead To A Significantly Increased Calibration Burden.

Diesel Engine Complexity

	Year	Engine Technologies	Number of Calibrateable Parameters
	1998	Injection Timing	3
		Injection Pressure	
	2004	Injection Timing	4 - 5
		Injection Pressure	
		EGR	
		Turbocharging Control	
	2007+	Injection Timing (multiple)	11 - 15+
		Injection Pressure	
	Ø III.	EGR	
MF	NT OF BUS	Turbocharging Control	
Ĩ		Aftertreatment Control	

5

Increasing Calibration Complexity

YEAR	Actuators	Sensors	Control
			Outputs
1998	2	8	3
2002	4	10	3
2004	8	15	5
2007	10	19	11
2010	12	22	15

Full Factorial Calibration Space

Year	Engine Control Parameters	Number of Discrete Test Setpoints
1998	Speed, Load, Injection Timing & Pressure	10,000
2002	Speed, Load, Injection Timing & Pressure, EGR	100,000
2004	Speed, Load, Injection Timing & Pressure, EGR, Turbocharging Control	1,000,000
2007	Speed, Load, Multiple Injection Timing, Injection Pressure, EGR, Turbocharging Control, Particulate Filter Regeneration	1,000,000,000
2010	Speed, Load, Multiple Injection Timing, Injection Pressure, EGR, Turbocharging Control, Aftertreatment Controls	10,000,000,000

The Challenge for Calibration

- The Curse of Dimensionality a 2007 specification diesel engine might have 10⁹ test points if tested in a full factorial experiment
- Calibration requirements may increase by 2-3 orders of magnitude by 2010-2014 due to new engine technologies
- Design of Experiments can reduce the overall engine mapping burden significantly (perhaps by a factor of 100), but this still results in huge experimental matrices
- And, steady state engine mapping not well suited to TRANSIENT emissions regulations, fuel economy

reduction, driveability and aftertreatment regeneration.

Steady-State Degrees of Freedom

Steady-State Performance Mapping

For Steady-State
 Calibration, Static Engine
 Performance Mapping Is
 Sufficient

Time-Consuming Process

 Results Not Directly Applicable to Transient Calibration

Transient Degrees of Freedom

Competing & Overlapping Time Scales

- Step Response Of Individual Engine Systems
- Orders of Magnitude Difference in Transient Response
- Including *Time* as an integral part of the Setpoint Definition
 Process enables optimum
 Transient Calibration
- Transient Engine Performance Mapping corresponds to a Transient Design Of Experiment

Boost Control

Time - sec

Time - sec

NOx Aftertreatment

Engine Operating Modes

Calibration Requirements are increased further due to Multiple Engine Operating Modes including

- Steady-state
- Transient
- Cold
- Altitude
- Smoke Control

- Aftertreatment Regeneration

(predominantly transient or dynamic phenomena) and varying ambient or exhaust conditions

Model-Based Calibration

Problem: How can engine calibration be performed quicker, better and cheaper?

Solution: Transfer the majority of the calibration burden out of the Engine Test Cell and onto the engineer's desktop, using MODEL-BASED Rapid Transient Calibration Methods.

Model-Based Methods

A definition of model-based methods, relevant to engine calibration, is

"a combination of first principles, equationbased modeling and data-based techniques used to develop high fidelity, real-time dynamic models, suitable for predicting engine emissions, performance and operating states over highly transient operating cycles".

Modeling Approach

Dynamic (transient) models use a combination of

- Physical Modeling
 - >>> First principles
 - >> Equation-based
 - >> Phenomenological
- Heuristic Modeling
 - Data-driven
 - Learning
 - Data from actual engine operation (real time emissions,
 - performance, fuel consumption and operating states).

Example of a Transient Engine Model

- Composite Model made up of Interacting Submodels:
- Air Flow Model
 - Volumetric Efficiency
 - EGR Flow Model
 - Charge Estimation
- Fuel Injection and Combustion Model
 - Air-Fuel Ratio Estimation
 - Thermal Effects
 - NOx and PM Formation Sub-models

Transient Model Development

Diesel Engine Modeling

Direct Injection Diesel Engine

Engine Speed Fuel Injection Quantity Injection Timing Injection Pressure Exhaust Gas Recirculation Variable Geometry Turbocharger Setting

Transient Design Of Experiment

Transient Engine Test Cycles

Transient Engine Test Cycle

Transient Engine Modeling Results -Torque

DDCQ

Transient Engine Modeling Results -NOx

DDCQ

Typical Model Emissions Prediction Accuracy

NOx, CO ₂ (instantaneous)	2-5%
CO, HC (instantaneous)	5-10%
PM (instantaneous)	5-10%
NOx, CO ₂ (integrated)	2-3%
CO, HC (integrated)	3-5%
PM (integrated)	5-6%
Fuel consumption	1-3%

Rapid Transient Calibration Optimization

Transient Calibration Optimization Functions

- Cost function minimize fuel consumption,
- Subject to the constraint of meeting NOx and PM emissions integrated across a transient cycle,
- While not exceeding certain engine operating state parameter levels, such as turbocharger speed, peak cylinder pressure and peak injection pressure,
 While also meeting NTE emissions levels.

DDCQ

Model-Based Technologies under Development

©2005 Detroit Diesel Corporation, All Rights Reserved.

Model-Based Control Components

Summary

- Model-based methods can transfer a significant portion of the engine calibration burden from the test cell to the desktop
- Transient engine models are the technology required to meet the transient emissions regulations and operating requirements
- A combined equation-based and data-driven engine modeling approach offers high model fidelity and predictive capability

- Calibration optimization is well suited to the computational environment
- As engine mechanical and electronic complexity increases, so these methods will become more important and useful.

Acknowledgements

U.S. Department of Energy

- Gurpreet Singh
- Roland Gravel

National Energy Technology Laboratory

- Carl Maronde
- Jeffrey Kooser

Detroit Diesel Corporation

- Kuno Flathmann
- Ping Ge
- Min Sun
- Atkinson LLC
 Greg Mott

