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BackgroundBackground

Observations of a soot nanostructure-oxidative reactivity 
relationship, reported at DEER 2004, evidenced by lower 
regeneration temperature for biodiesel (B20) blends and 
greater oxidation rates in TGA/DSC measurements as well as 
in on-engine DPF regeneration tests – what is the source of 
this difference in PM regeneration process and how do these 
soots behave during oxidation ?
Vander Wal et al. published in Combustion & Flame in 2003 
and 2004 papers demonstrating: (1) differences in the structure 
within soot primary particles with benzene, ethanol and 
acetylene, and (2) particles with less ordered structure 
provided higher oxidative reactivity
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Objectives
Ultra Clean Fuels Project
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Ultra Clean Fuels Project

Determine the Interaction between Formulation of 
Conventional, Renewable and Synthetic Diesel Fuels and their 
Injection Characteristics
Measure Physical Properties of Fuels that Can Provide Support 
for Understanding Injection, Combustion and Emissions 
Performance of Diesel Fuels
Use Injection Studies, Physical Properties, Emissions 
Measurements and In-Cylinder Visualization to Determine 
Optimal Fuel Formulations
Link Feedstock and Fuel Production Process to Physical 
Properties and, Thereby, Injection, Combustion and Emissions 
Performance  - Characteristics of Soot from Different Fuels –
Considering Neat Alternative Fuels, B100 and FT100
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Schematic diagram of the 
Cummins ISB test stand
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Outline
Ultra Clean Transportation Fuels from Natural Gas

Outline
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Review of Key Observations Reported at DEER 2004
Influence of Fuels, Injection Timing, Combustion and 
Emissions on the Performance of Aftertreatment Devices 
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Fuel Composition Effects on Emissions
BP-325 and BP-325/B20 Test Fuels in a High Temp Regeneration
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Soot Morphology

(c) BP15 Derived PM (d) BP15B20 Derived PM 

100 nm 100 nm

Variation in Heavy Hydrocarbon 
Fraction

Variation in Heavy Hydrocarbon 
Fraction
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Soot Nanostructure – Less Ordered Nanostructure 
Corresponds to Enhanced Reactivity

(a) BP15 Derived PM (b) BP15B20 Derived PM 

Initial Results – Comparing Diesel and B20
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Low temperature Reactivity from DSC/TGA test
- under 21% oxygen gas with treated samples
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Expanded Results – Comparing Diesel, F-T and B100
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High Temperature Regeneration (from 280 to 450 oC)
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(a) BP15 Derived PM (b) BP15B20 Derived PM 

Electron Microscopy of Initial Soot Nanostructure
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(c) B100 Derived PM (d) F-T diesel Derived PM 

Initial Soot Nanostructure
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SummarySummary

From a comparison of DPF regeneration behavior
Enhanced regeneration of B100 in terms of both rate and 
BET is observed, whether this comes from particulate 
reactivity or catalyst activity which is sensitive to fuel sulfur
This difference in oxidation rate of DPF soot cake is 
reproduced in mass based rate on TGA as will be shown
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Raman Analysis of Initial Structure
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(a) B100

(b) FT

Raman Analysis of Initial Structure
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(d) B20

(c) BP15
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Initial Oxidized

FT

B100

Structural Change During Early Stage of Oxidation (30min) 
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SummarySummary

From a comparison of particulate reactivity:
There is no definitive impact of initial nanostructure on 
oxidation rate
Under surface burning dominance during the early stage 
oxidation, the degree of internal structural change exerts a 
strong influence on the oxidation rate
The relative amount of initial oxygen groups is an important 
factor governing the soot oxidation rate
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B100 Soot 

100 nm75% burn off, 50 min

800k x500k x

105k x
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Once micro pore is 
fully penetrated, 
central hollow

For simplicity, 
ignore 
crosslinking in 
this shell-core 
structure

Further 
coalescence, due 
to physical factor 
such as increase 
in layer mobility 
and minimizing a 
strain energy

Surface 
burning

Internal 
burning

Layer 
rearrangeme
nt

40% burnoffInitial 75% burnoff

Oxidation Progression Model for B100 Soot
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500k x 800k x

Still wavy and much 
shorter layer than B100

105k x

75% burn off, 105 min

FT Soot
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Gradual increase in D band and decrease in relative ratio 
of graphitic peak suggesting a tendency toward disordered 
state
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SummarySummary

B100 soot results in capsule type oxidation through internal 
burning, leading to a more ordered layer arrangement 
FT100 soot undergoes surface burning and less layer 
rearrangement than B100 soot, even at 75% burn off 
Early dramatic changes in inner structure and subsequent 
hollowing out of primary particles is a crucial factor in enhancing 
oxidation
Surface reactivity involved in the early stage oxidation also 
seems to be responsible for a layer arrangement at later stage
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ConclusionsConclusions

Generalized Transition from surface burning to internal 
burning/layer rearrangement at later stage of oxidation
Enhancement of oxidation and its unique process with B100 soot
Importance of surface oxygen groups for a faster oxidation and 
layer arrangement
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