# Role of Thermoelectrics in Vehicle Efficiency Increase

Lon Bell BSST LLC

11th Diesel Engine Emissions Reduction (DEER) Conference August 21-25, 2005 Chicago, Illinois

### **Market Forces are Changing**

Emissions reductions are being introduced worldwide

Great external pressures to increase fuel economy

- Customer demands to reduce operating costs
- Customer concerns with fuel supply availability and possible needs for fuel allocation
- Government demands for fuel economy increase/CO<sub>2</sub> reduction

It may not be acceptable to throw away power contained in vehicle exhaust

### **Why Thermoelectrics?**

Solid-state cooling, heating and power generation

Small, light-weight. Potentially very reliable and rugged

Electrically powered with very few (or no) moving parts

Distributed (and spot) cooling/heating/temperature control

No gaseous pollutants

Waste power recovery easily adaptable to varied form factors and thermal power influx

### What Has Limited Usage?

Power generation efficiency has been less than 5%

- Inadequate for many high-power applications
- Limits usage to small applications
- Too inefficient for auxiliary power generation and automotive use

Thermal flux density has been low

- Volume and weight too great at high power levels
- Form factor not readily adaptable to some application needs
- Poor interface to high-power density applications

Lack of design knowledge and effective simulation tools

- Performance often poorer than predicted
- Characteristics and, hence response, can be a strong function of operating conditions

### TE System Performance Gains Since 2000

Materials

BiTe Thermoelectrics (1960s) Heterostructures (2000-2002)

Materials/Design Incremental improvements (1960-2002) New ancillary materials and components (1960-2002)

Thermodynamic Cycle Isolated Element (2000-2002) Convection (2001-2002)

Power Density Sintered micropower (2002) Heterostructure (2001)

2005 DEER Conference

Baseline +70 to 160%

5 to 15%

5 to 10%

100 to 120% 30 to 80%

Up to 25 X Increase 30 to 300 X Increase

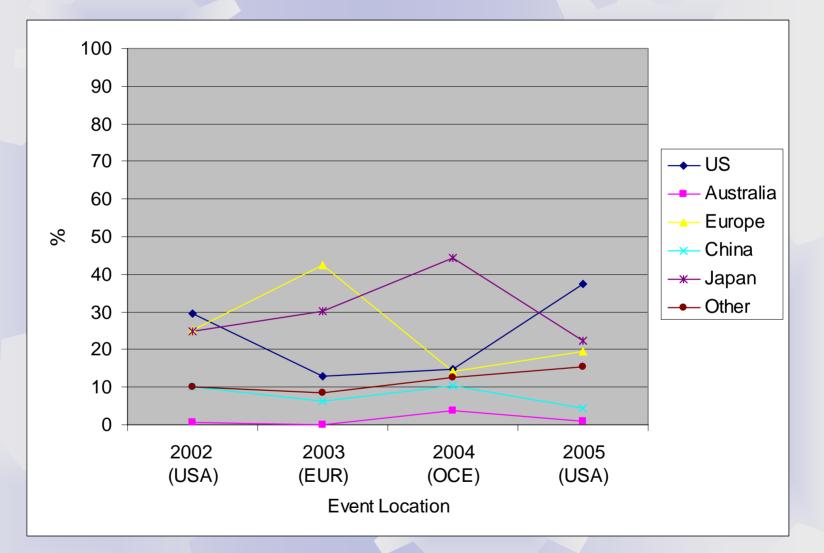
## Vehicle Related TE Development Initiatives

### **US Government**

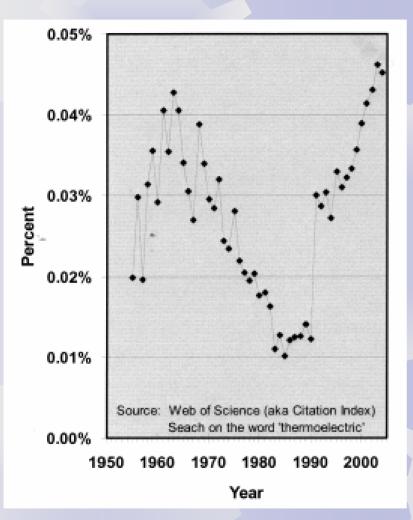
- DARPA- TE materials and subsystem technology
- ONR- TE materials and system technology
- DOE- Waste heat recovery systems
- JPL, Others- Power generation materials and systems Japan
  - NEDO- TE power generation materials
- Trash incineration waste heat demonstration programs Company Initiatives
  - GM- DOE, materials
  - Visteon- DOE, cooling/heating
  - Delphi- Materials
  - Denso- Power generation, cooling/heating
  - UTRC- DOE, cooling/heating
  - Catapillar- Waste heat recovery

### Europe

- Collaboration with NEDO of Japan
- BMW- DOE
- Smaller varied initiatives


## **Vehicle Related Applications**

| Application                           | Status                              | Program Objective                                 |  |  |  |  |  |
|---------------------------------------|-------------------------------------|---------------------------------------------------|--|--|--|--|--|
| Cooling/Heating                       |                                     |                                                   |  |  |  |  |  |
| Occupant local<br>temperature control | Concept evaluation                  | Increased occupant comfort                        |  |  |  |  |  |
| Beverage heating/ cooling             | Under development                   | Convenience                                       |  |  |  |  |  |
| Power electronics cooling             | Concept evaluation                  | Performance, reliability increase, cost reduction |  |  |  |  |  |
| Auxiliary heating/cooling             | Under development                   | Increased occupant comfort                        |  |  |  |  |  |
| Seat heating/cooling                  | In production                       | Increased occupant comfort,<br>energy savings     |  |  |  |  |  |
| Power Generation                      |                                     |                                                   |  |  |  |  |  |
| Coolant waste heat recovery           | Concept evaluation                  | 1-3% mileage increase in automobiles              |  |  |  |  |  |
| Exhaust waste heat recovery           | Under development                   | 8-12% mileage increase in automobiles             |  |  |  |  |  |
| Other (transmission, brakes)          | Concept evaluation Mileage increase |                                                   |  |  |  |  |  |


### **Advanced Materials Development**

|        |                     | Materials           |                     | Peak Demonstrated<br>Performance |                     |
|--------|---------------------|---------------------|---------------------|----------------------------------|---------------------|
| USA    |                     | Cooling/<br>Heating | Power<br>Generation | Cooling/<br>Heating              | Power<br>Generation |
|        | JPL                 | No                  | Yes                 | N/A                              | ZT ≈1.4             |
|        | Lincoln Labs        | Yes                 | Yes                 | ZT>1.6                           | ZT>2.0              |
|        | MSU (Tellurex)      | Possible            | Yes                 | ?                                | ZT≈1.8              |
|        | RTI                 | Yes                 | Yes                 | ZT≈1.6                           | ZT≈2.6              |
|        | Teledyne            | No                  | Yes                 | N/A                              | ZT≈1.4              |
| Japan  |                     |                     |                     |                                  |                     |
|        | Komatsu LTD         | No                  | Yes                 | N/A                              | ZT≈1.2              |
|        | Osaka University    | No                  | Yes                 | N/A                              | ZT≈1.2              |
| Europe |                     |                     |                     |                                  |                     |
|        | Fraunhofer-Institut | Yes                 | No                  | ZT≈0.7                           | N/A                 |
|        | IOFFE Institute     | No                  | Yes                 | N/A                              | ZT≈1.1              |

## **TE Papers by Region**



### **TE Intellectual Property Activity**

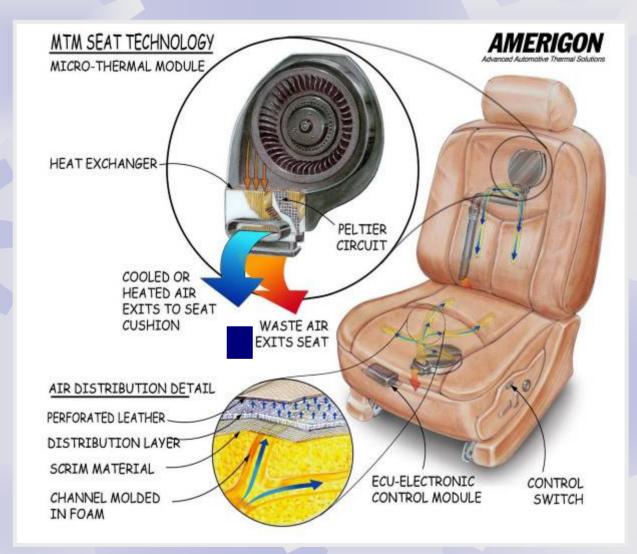


Results of patent abstracts, key words search shows spike in TE related patent applications

Recently, about 2/3 from Japanese applicants

Majority focus on power generation material and component design

Source: Cronin Vining, ICT 2004


### CCS<sup>TM</sup>- Successful TE-Based Product

CCS- Climate control in seats; adds cooling and ventilation to seat heating function

Standard and optional system for cars, vans, light trucks and SUVs

Potential to reduce climate control system energy consumption in both cooling and heating modes

### **CCS<sup>™</sup> Seat Design**



## Amerigon Current CCS<sup>TM</sup> Vehicle Lines



#### adillac Deville



#### Cadillac XLR



#### **Mercury Monterey**



#### Escalade ESV\*



### Infiniti M45



Nissan Fuga



Nissan Cima 2005 DEER Conference



#### Lincoln Navigator



#### Infiniti Q45



Hyundai Equus\*



#### Ford Expedition



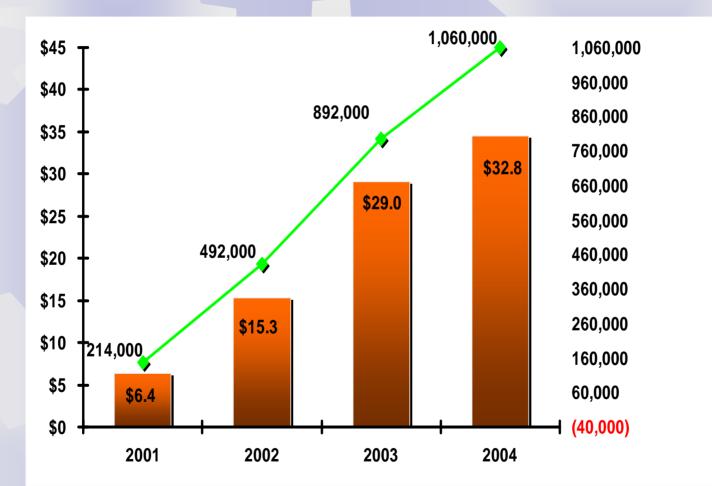
#### Toyota Celsior\*



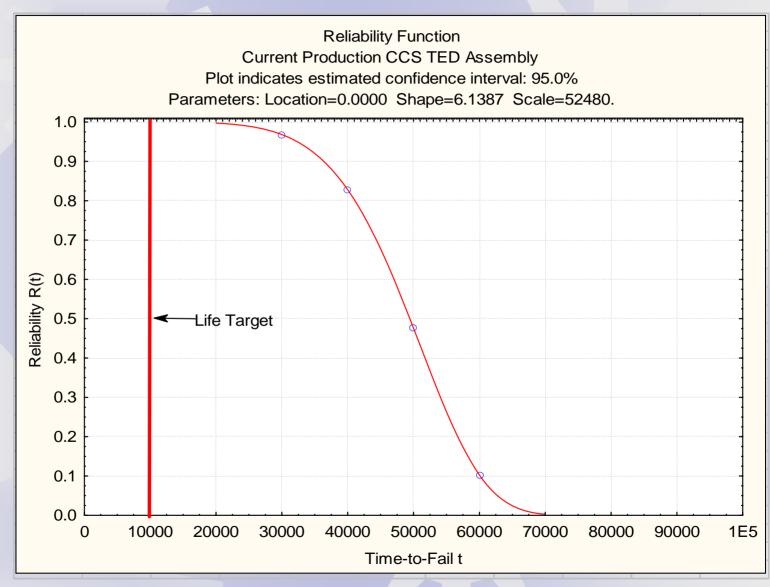
#### Lexus LS 430\*



#### **Lincoln Aviator**




#### Lincoln LS


13 \* Four Seat Systems

### **Amerigon Growth Rates**

#### **Sales/TE Module Deliveries**



### **Usage Experience**



### **Summary Slide**

TE devices are expected to be significant contributors to meeting today's needs for increased fuel economy, reduced harmful emissions and improved operating reliability.

A technology race has started in the US, Asia and Europe to commercialize TE-based energy saving systems for vehicle applications.

Positive results would give early adapters a significant advantage in a marketplace affected by emerging long-term global forces to reduce fuel consumption and harmful emissions.