U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

FreedomCAR & Vehicle Technologies Program

The 60 Percent Efficient Diesel Engine; Probable, Possible, or Just A Fantasy?

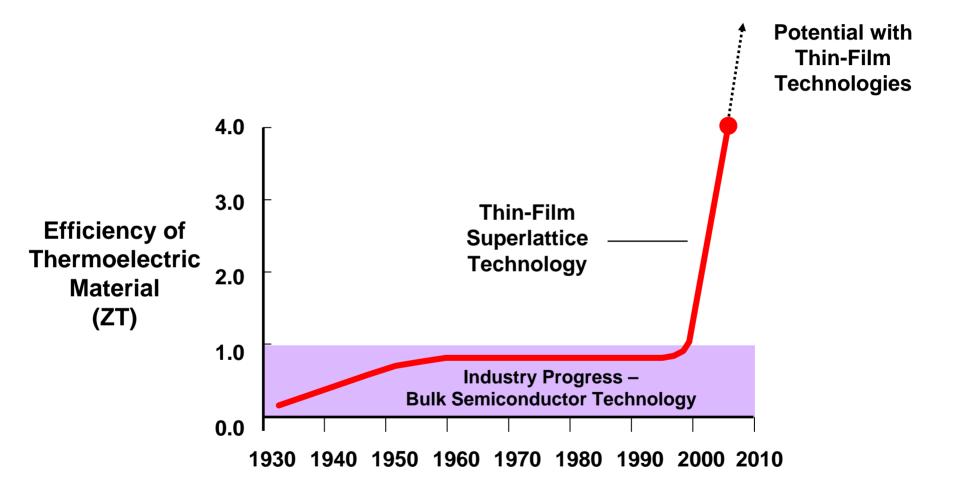
John W. Fairbanks FreedomCAR and Vehicle Technologies Energy Efficiency and Renewable Energy US Department of Energy Washington, D.C.

Diesel Engine Emission Reduction Conference Palmer House Chicago August 24, 2005

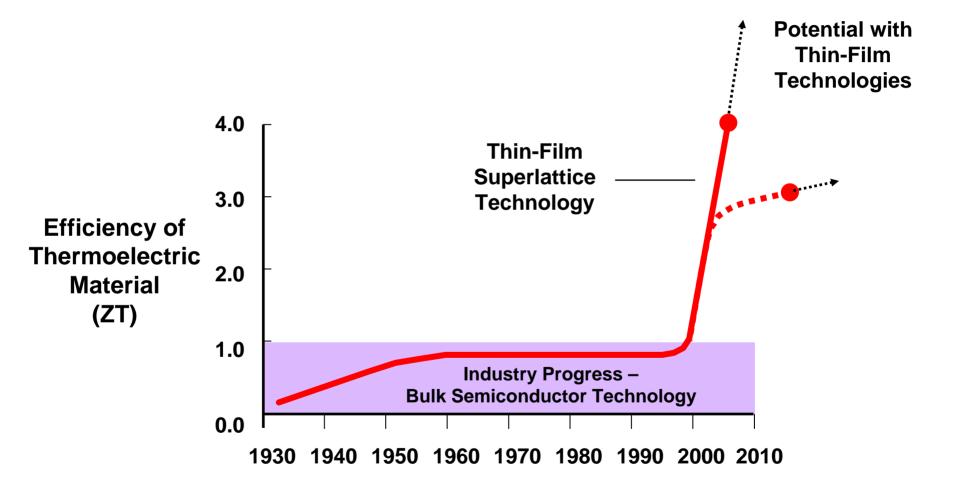
POSSIBLE THERMOELECTRIC TRANSPORTATION APPLICATIONS

- > Current Program:
 - **10 Percent Gain in Diesel Fuel Economy**
- > Follow-On Programs:

60 Percent Efficient Diesel Peltier HVAC (Air Conditioning)


> Long-Term:

Replace Vehicular ICE Propulsion Engine with Thermoelectric Generator



- □ Discovered 1831
- □ 1831 1940: thermocouples and scientific curiosity
- 1940: IAFFE in Russia produced semiconductor thermoelectric generator ~ 3 percent efficiency
- □ 1950 1998: Figure of Merit ZT < 1; 5 to 7 percent efficient
- □ 1996: analytically proposed low-dimensional thermoelectrics
 - Engineer electron and phonon transport in nanostructures
 - Quantum wells, superlattices, quantum wires, and quantum dots used to change band structures, energy levels, and density states of electrons
- 1997 to date: several labs reported making thermoelectric specimens with ZT = 2 to 4
 - Much of this work supported by DARPA and ONR
 - > 300 percent improvement in thermoelectric efficiency
- 2005 2010: DOE program to assist moving thermoelectric technology from lab to
 - commercial scale up for production
 - > develop devices to improve ICE fuel efficiency by 10 %

Hot Side ("Waste Heat") Heat-to-electricity conversion **Basic TE Device** efficiency depends on a figure of merit, Z, that is Heat material-specific: Т $Z = S^2 \sigma/k$ Electrons -Holes S = Seebeck Coeff = dV/dTТ С σ = Electrical Conductivity k = Thermal Conductivity Heat Sink Current $+ZT_{avg}$ Load Resistance cold * hot T_{hot} Cold side Carnot efficiency Waste heat >> Electricity

Pacific Northwest National Laboratory U.S. Department of Energy

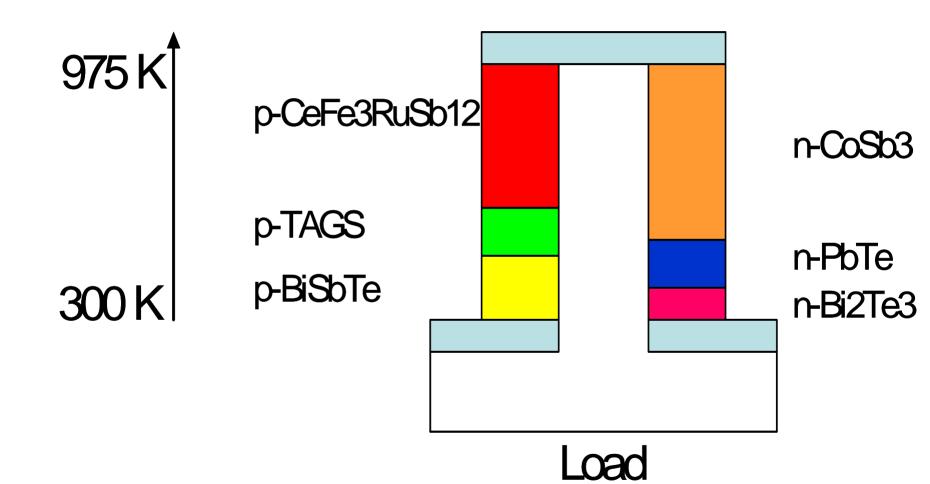
Battelle

Heat transfer different for nanostructures Thermoelectric materials

Heat-to-electricity conversion efficiency depends on a figure of merit, ZT, that is material-specific:

 $ZT = S^2 \rho T/k$ where: S = Seebeck Coeff = dV/dT
 $\rho = Electrical Conductivity
<math>k = Thermal Conductivity$ In macrostructures: $\uparrow \rho => \uparrow k$ In microstructures: $\uparrow \rho$ [increase electron mean free path]

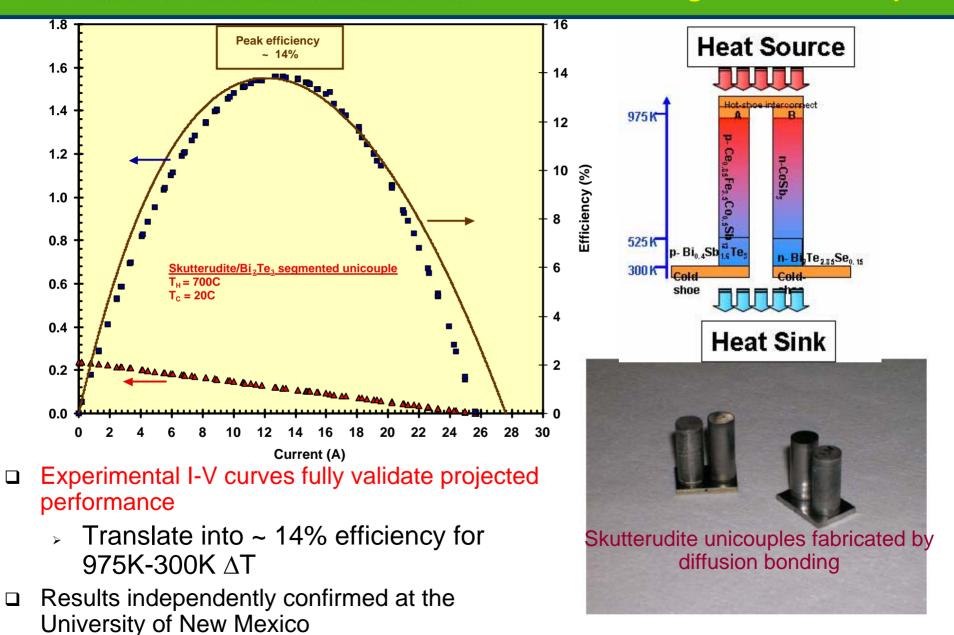
↓k [k_{phonons} + k_{electrons}]


□ Low dimensional thermoelectrics need substrate support

- > High temperature capability, low k, strong and thin
- Kapton is a candidate

 \Box Increase ΔT across thermoelectric generators

> Improve cooling at the cold side



U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Thermal and electrical testing -Segmented unicouple

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

HETE Applications

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

CITIZEN Eco-Drive Thermo Watch

- Converts temperature difference between body and surrounding air into electrical energy
- > No battery charge needed
- When not being worn, second hand moves in 10second increments (non power generation mode)
- Number of thermocouples in semiconductor array: 1,242 pairs
- Operating time from a full charge: Approx. 6 months (approx. 16 months in power-saving mode)

U.S. Department of Energy Energy Efficiency and Renewable Energy

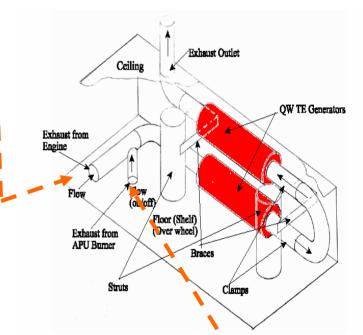
Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Advanced Thermal Management for Tomorrow Soldier

Figure 1. Today's soldier highlighting the lack of climate control and heavy battery weight compared to tomorrow's soldier which will provide a lightweight system of cooling, heating, flexible armor and portable power.

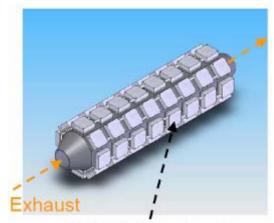
U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Army Stryker Vehicle

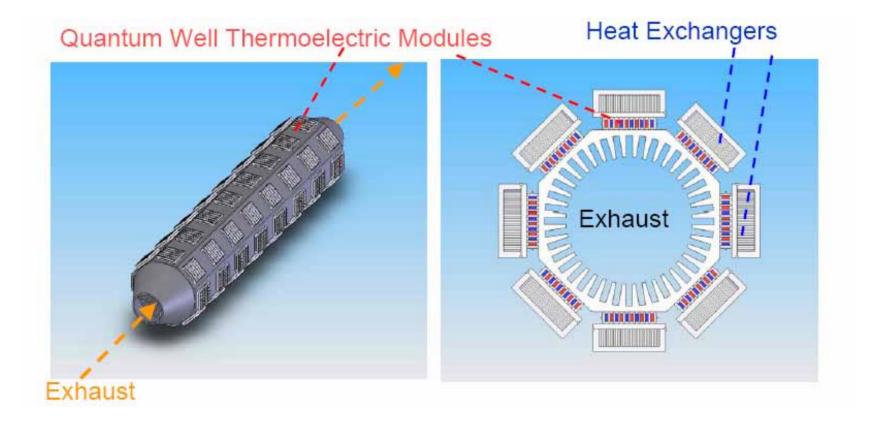


U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Stryker Vehicle Has Space for Under armor Quantum Well Thermoelectric Generators

15% Efficiency Predicted with two 5 kW_e QW TE Generators Driven by <u>Vehicle Exhaust</u>



When Parked <u>APU Burner</u> to Provide Power Using Same Thermoelectric Generator


- Contains 64 QW modules in octagonal arrangement
- Integrated coolant and QW module arrangement
 - Each QW module in compression
- QW generator provides 5X power of current Bi2Te3 module in same space
 - Fits in 27-in length and 10-in diameter with cover plate

QW TE Modules & Coolant Heat Exchangers

Thermoelectric Modules and Assembly with Coolant Heat Exchangers

Auto Air-Conditioning Refrigerant: R-134a, CO₂, or Thermoelectrics

- □ U.S. probably will stay with R-134a
- \Box Europe apparently going to CO_2
 - R-134a has 1,300 greenhouse gas effect as CO₂
 - > Autos leak 10 to 70 g/yr of R-134a
- □ Japan and Asia still undecided
 - > Toyota's decision will be the key
- □ Thermoelectrics
 - I million climate control seats ordered this year by GM, Ford, and Toyota
 - > Auto air conditioning will depend on cost of high efficiency of thermoelectrics being developed for direct energy conversion
 - Requires COP of 2 to 3
 - Achieved in the laboratory

- R-134a has 1,300 times greater greenhouse gas impact than CO2.
- Use of thermoelectrics as Peltier Devices could reduce R-134a refrigerant usage, the most common working fluid in heating/cooling systems.
 - > Car air conditioning leaks 10 to 70 g/year
 - > > 90 % personal vehicles in North America & Asia and 87 % European cars have A/C

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Thermoelectrics Replacing Gas Compressor Refrigeration ?

TODAY

Thermoelectric Hot & Cold Mini Fridge (1.5 ft³)

FUTURE ?

Side-by-side Refrigerator/Freezer (27.5 ft³)

Battery Temperature Impacts HEV/EV

Temperature affects battery operation

- > Round trip efficiency and charge acceptance
- > Power and energy
- > Safety and reliability
- > Life and life cycle cost

Battery temperature impacts vehicle performance, reliability, safety, and life cycle cost

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Beltless Engine

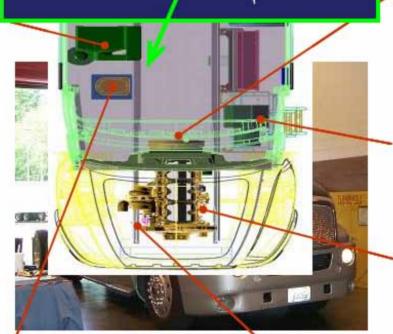
Modular HVAC

compressor more

efficient and serviceable

3X more reliable compressor no belts, no valves, no hoses leak-proof

refrigerant lines instant electric heat


Shore Power and Inverter

Supplies DC Bus Voltage from 120/240 Vac 50/60 Hz Input Supplies 120 Vac outlets from battery or generator power

Down Converter

Supplies 12 V Battery from DC Bus Turbocomo ound Electrify accessories Decouple them from engine Match power demand to real time need Enable use of alternative power cources

Ele V F

Compressed Air Module

Supplies compressed air for brakes and ride control

Electric Water Pump

Higher reliability variable speed faster warm-up less white smoke lower cold weather emissions

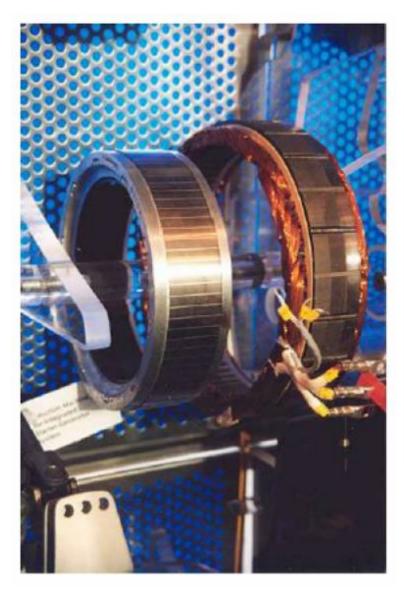
Starter Generator Motor

Beltless engine product differentiation improve systems design flexibility more efficient & reliable accessories

Auxiliary Power Unit

Supplies DC Bus Voltage when engine is not running - fulfills hotel loads without idling main engine overnight

Electric Oil Pump


Variable speed Higher efficiency



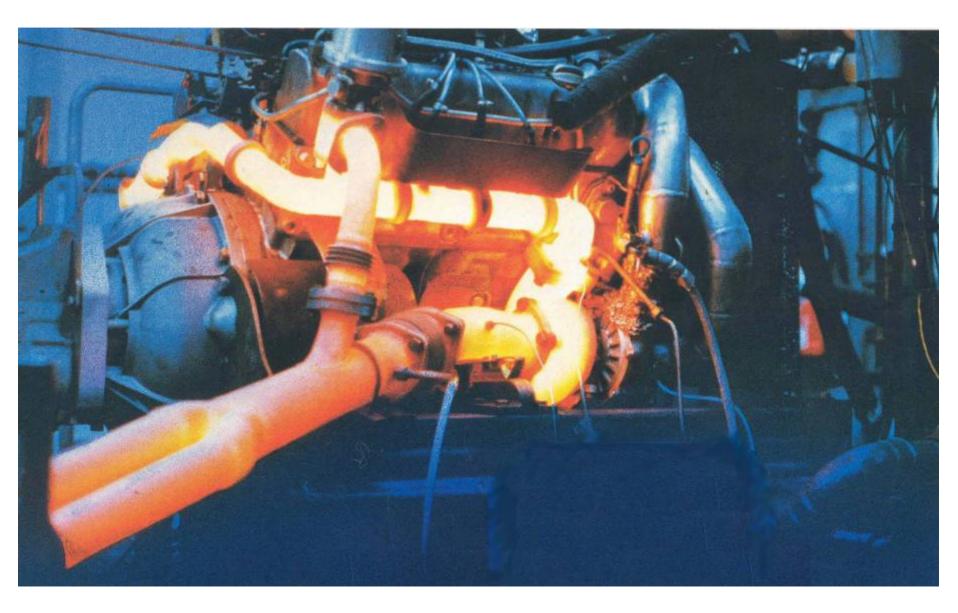
U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Integrated Motor/Alternator Starter

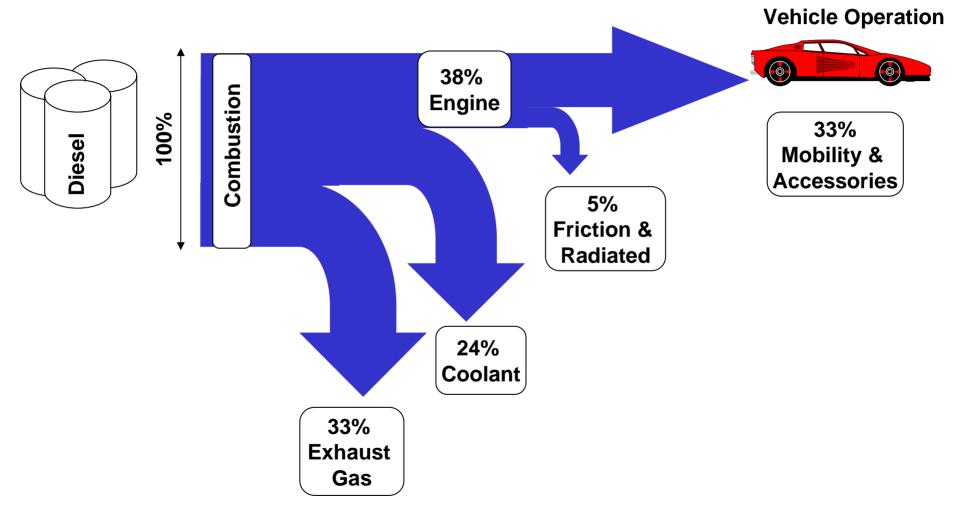
2004 Jaguar XJ

- Use of aluminum results in a 500-lb weight reduction, with consequent fuel saving
- Currently, only luxury cars use aluminum frame and body, due to high cost
- If we can recover sufficient energy from the aluminum manufacturing process, it may become feasible to use it for mass-produced cars, due to reduced cost

- Aluminum Content of Automobiles
- Rule of Thumb
 - > 10 % weight reduction provides 6% to 7% improvement in fuel economy
- Aluminum Association Inc. Projects
 - Aluminum in North American cars
 - 2005 280 lbs.
 - 2008 300 lbs.
- □ European Cars: Jaguar, Aston Martin, and Audi A-8s
 - Aluminum frame and body
 - Saves 500 to 600 lbs.
 - > BMW 5 series ~ 50/50 weight balance with steel
- DOE has initiated program to recover energy from Aluminum manufacturing process
 - Possible increase in aluminum use in mass produced cars


High Efficiency Thermoelectric Teams

General Motor Corporation and General Electric	MIT- Lincoln Laboratory, University of Michigan, University of South Florida, Oak Ridge National Laboratory, and RTI International
BSST, LLC.	Visteon, BMW-NA, and Teledyne
United Technologies Corporation	Pratt & Whitney, Hi-Z Technology, Pacific Northwest National Laboratory, and Caterpillar, Inc.
Michigan State University	Jet Propulsion Laboratory and Cummins Engine Company



U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

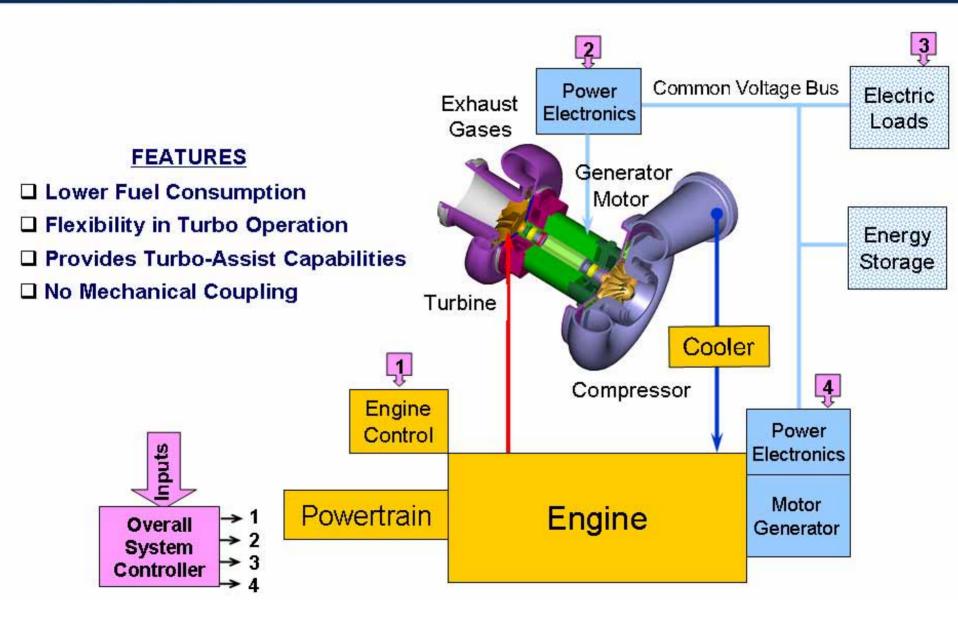
Available Energy in Engine Exhaust

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and af and bie at Sources

Diesel Engine (Light Truck or Passenger Vehicle)

Current 6-Team Program

- Define commercial viability of TEG and Electric Turbocompounding (ETC) for vehicles in the 2005-2009 time frame
 - Identify challenges for TE commercialization

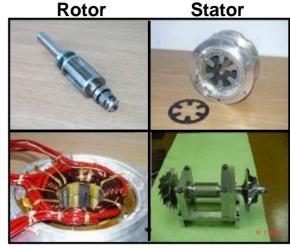

target cost at \$0.15/watt (not show stopper)

- Availability
- Durability
- Degradation
- Follow-on 60% efficient diesel engine program start decision in 2008
 - Convert waste heat to electricity from components with adequate Delta T
 - Power conditioning
 - Integrate with beltless engine concept
- Vehicular Peltier Thermoelectric Air Conditioning System Project being considered
 - Requires a COP of 2.0 to 3.0

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy

is clean, abundant, reliable, and affordable

Electric Turbocompound



U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Diesel Engine Waste Heat Recovery Utilizing ETC

Electric Turbocompound (ETC) Technology

Windings Rotor Assembly

Potential for 5 to 10 % Reduction in Fuel Consumption

Electric Turbocompound Turbocharger

-Currently a 10% fuel economy gain is the objective being sought through the use of a Thermoelectric Generator converting ICE engine waste heat directly to electicity

Road Map

-A follow on program using 6 Thermoelectric units could recover about 20 to 25 per cent of the powertrain's waste heat.

-This electrical energy would be routed through power conditioning equipment then integrated with the "beltless or more electric" engine concept or the integrated motor/alternator /starter.

-Theoretically this approach has the potential of achieving a nominal 60% efficiency

	ISB Dodge Pickup	ISX Class 8 Truck
Emissions Useful Life	185,000 miles	435,000 miles
Typical Fuel Consumption	16 mpg	5 mpg
Fuel Consumed During the Useful Life	11,500 Gallons	87,000 Gallons
Fuel Consumed with Improved Efficiency	10,500 Gallons	79,100 Gallons
Fuel Saved	1000 Gallons	7900 Gallons
Money Saved (\$2.00 gallon)	\$2000	\$15,800

10 % engine brake efficiency means:

 100 million gallons of fuel saving per year for conventional vehicles

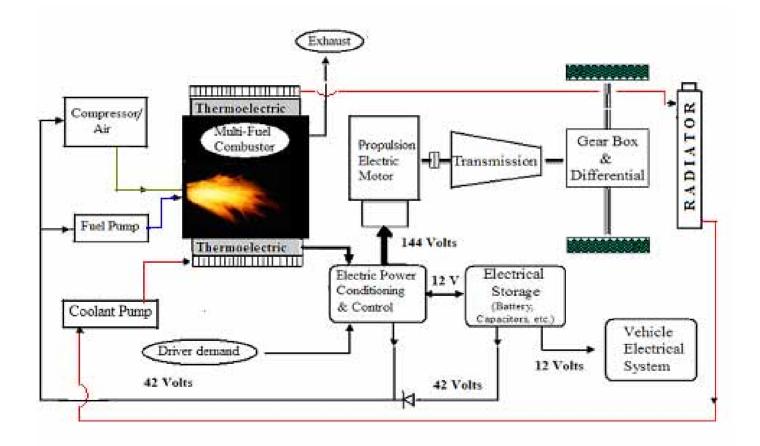
-- using GM's 2003 NA model year volumes (2.0 million cars & 2.8 million trucks) and CAFE standards, assuming 15000 miles per

vehicle per year

 1.5 million gallons of fuel saving per year at 2010 for hybrids

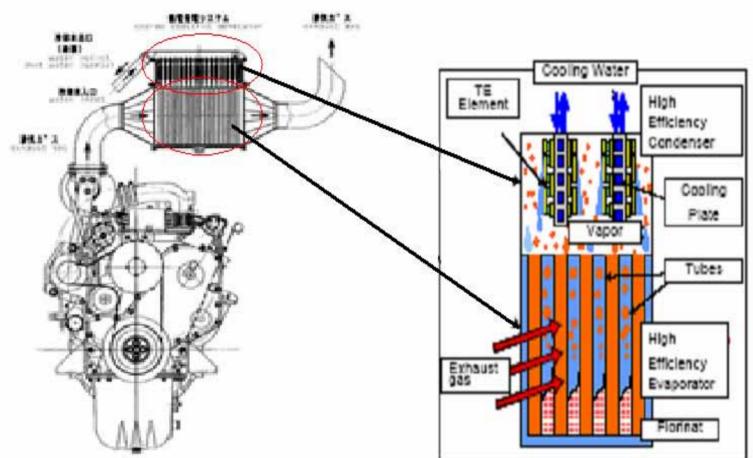
-- GM anticipate 50,000 hybrids per year (1% of GM's NA total sales).

Dr. Jhui Yang - GM


10 % engine brake efficiency means:

- 707,000 fewer tons of CO₂ per year from conventional vehicles (2010)
- 550,000 fewer tons of CO₂ per year from hybrids (2010)
- Regulated emissions will be decreased proportionally to the reduction in fuel consumption

Dr. Jhui Yang - GM


Generic Concept for a Thermoelectric Automotive Propulsion Drivetrain

U.S. Department of Energy

Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Japanese Diesel Engine Co-Generation Using Thermoelectric Generator

Courtes

on Development for Advanced Thermoelectric Energy Conversion Systems

This Project is funded at 2 times the level of DOE's 4 Team Thermoelectic Generator 10 % Fuel Economy Improvement Program

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Typical Diesel Engine Waste Heat ΔT's

Component	ΔΤ
Radiator	≈ 70°C
Lube Oil Sump	≈ 70°C
Brakes	≤ 350°C
Exhaust System	≤ 400°C
EGR Loop	≈ 250°C
Turbocharger Compressor (Output)	□≈ 33°C

- Objective: 60 percent efficient diesel engine powertrain
- □ Approach: recover electrical energy from waste heat
 - Integrate with beltless engine and/or integrated starter/motor-alternator
- $\hfill\square$ Potential sources for TE generator ΔT 's
 - Radiator
 - > Lube oil sump
 - > EGR loop
 - > Turbocharger air discharge
 - Brakes
 - Exhaust gas
- Note: high efficiency TE generator will significantly reduce the water pump, radiator fan, intercooler pump loads
- □ Thermally managed diesel (TMD-60)
 - Integrate with other emerging technologies

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Potential Therewilling a letter of the second of the secon

FreedomCAR & Vehicle Technologies Program

HVAC - Home and Industrial Fuel Cell Waste Heat Recovery **Battery Thermal Control** Industrial Process Waste Heat Recovery **Ocean Thermal Thermoelectric Energy Conversion Geothermal Energy Recovery Power Plant and Industrial Process Waste Heat Recovery** Wireless Sensors **Computer Chip Cooling Personal Cooling/Heating Systems** Marine Propulsion (Surface and Submarine) **Vehicle Propulsion** Vehicle and Building Air Conditioning/Heating

High Efficiency Thermoelectric Materials and Devices for

Solid State Power Generation & Cooling

Dr. Mihal E. Gross Office of Naval Research

Naval Applications

- Power generation
- Auxiliary power
- Energy recovery from waste heat
- Alternator replacement
- Distributed power systems
- Solid state cooling
- Unattended/remote power supplies

NUS CO. OPPORTON

Ramon muchure di Bulli Bolld Bittle Hatertali Internationenti Internationenti Internationenti

8-S Unm

A Roman Andrew St.

Harris Headel also

seder view or 2

High Efficiency

Naval Benefitz

- High reliability (>2.50,000 hrs.)
- Improved stealth Low noise

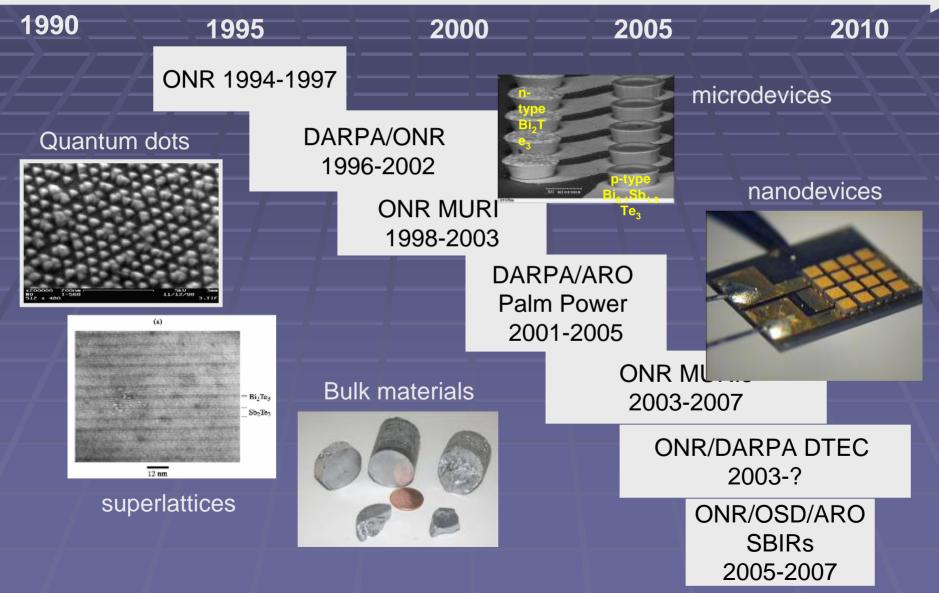
No vibrations

Small

the please of nancetices

Lightweight

No compressed gases/ chemicals Vecreased life cycle costs



. A set stands are order, P. I

Lines and Martines

all a state

DoD Investments in TE Technologies

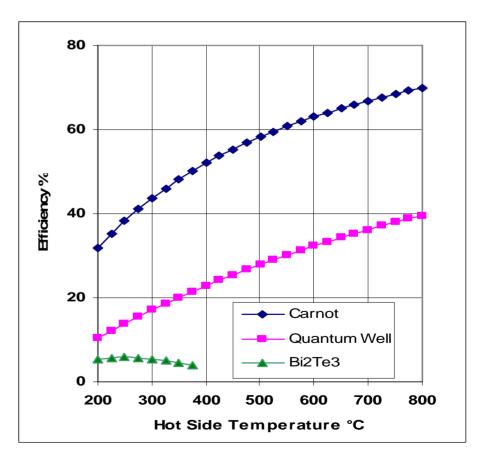
Direct Thermal-to-Electrical Energy Conversion

Dr. Mihal E. Gross Office of Naval Research

ONR Program Participants

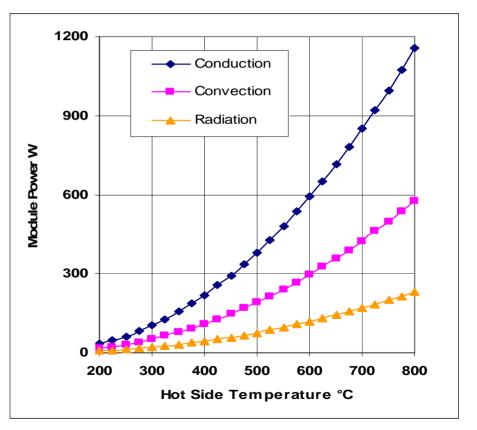
- Michigan State University
- UC Santa Cruz
- North Carolina State University
- Clemson University
- Harvard University
- MIT
- University of Michigan
- Purdue University
- UC Berkeley
- UC Santa Barbara
- University of Oregon
- University of South Florida
- University of Texas, Austin
- MIT Lincoln Labs
- Ames Lab

- RTI
- BSST
- Lockheed Martin
- Northrup Grumman/Newport News
- Pratt & Whitney/UTC
- Rockwell Scientific
- Tellurex
- MetaMateria

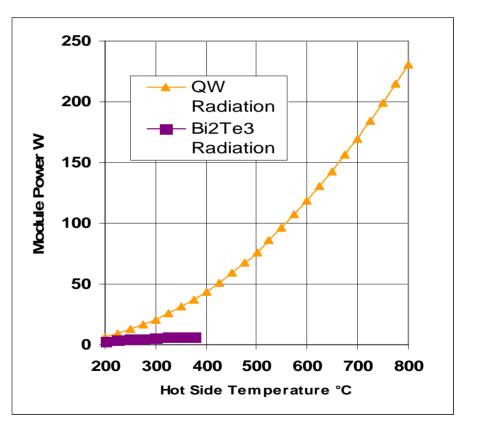

60% Efficient Vehicular Diesel Engine -

Probable, Possible or Fantasy?

Predicted Efficiency of Quantum Well Thermoelectric Module


- N-Type Si/SiC & P-type B4C/B9C
- □ Cold side at 50°C
- Based on measured a & r, and literature k (bulk thermal conductivity)
- Efficiencies compete with gasoline & diesel engines, & fuel cells.

Radiation coupling is practical design for high temperature; conduction or convection higher power


- □ N-Type Si/SiC & P-type B4C/B9C
- □ Cold side at 50°C
- □ Module is 2.5 x 2.5 in.
 - Thickness changed to match heat flux from source
 - Conduction
 - Convection
 - Radiation
- Based on measured a & r, and literature k (bulk thermal conductivity)
- Requires high temperature eggcrate

Quantum Well delivers 5 W_e/cm² at 800°C with thermal radiation from source to thermoelectric

- N-Type Si/SiC & P-type B4C/B9C
- □ Cold side at 50°C
- Represents practical design
 - Radiation coupling simplifies design and reduces thermal contact losses
- Based on measured a & r, and literature k (bulk thermal conductivity)

Near Term (3-5 yrs)

Mid Term (10-15 yrs)

Long Term (15-25 yrs)

Very Long Term (40+ yrs)

- Thermoelectric Generator providing 10% fuel economy gain
- "Beltless" or more electric engine
- Integrated Motor/Alternator/Starter
- \Box 5 Thermoelectric Generators mated diesel engine ΔT 's
 - > 60% efficient heavy duty truck engine
 - 55% efficient light truck (SUV's, Pick-ups, Mini-vans), auto

Thermoelectric air conditioner/heater for vehicles

- Aluminum/Magnesium frame & body replacing steel (Process waste heat recovery)
- □ 35% efficient Thermoelectrics with 500 $^{\circ}$ C Δ T
 - Replace Internal Combustion Engine
 - Combustor burns any fuel
- Radioisotope replaces combustor for vehicle propulsion
 - > 30+ years life powertrain
 - Replace vehicle body periodically