

Comparing the Performance of SunDiesel[™] and Conventional Diesel in a LD Vehicle and Engines

Henry Ng, Steve Ciatti, Scott Miers, and Munidhar Biruduganti

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

Acknowledgments

- Stephen Goguen and Kevin Stork of DOE for their support and guidance
- CHOREN (<u>Carbon Hydrogen Oxygen and Ren</u>ewable) of Germany for the SunDiesel[™] fuel
- Roger Cole, Geoffrey Amann, and Gregory Hillman of Argonne

SunDiesel[™] Fuel: Fuel Properties and Engine Performance Results

Research Objectives

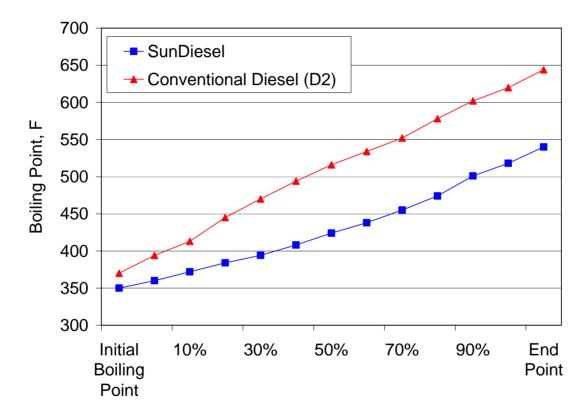
- To investigate and compare SunDieselTM with conventional diesel fuel both on road and in the lab
- To provide DOE and fuel producers with key emissions and detailed combustion data

Tasks Undertaken

- Fuel chemical analysis subcontracted to Phoenix Chemical Lab
- On-road and 4-wheel chassis dynamometer testing
- Single-cylinder HD and 4-cylinder LD engine combustion analysis

What is SunDiesel[™]?

- The fuel is derived from wood chips that are first gasified and subsequently go through the Fischer-Tropsch process to produce SunDieselTM.
- CHOREN projects production of 1 million tons/year by 2010.
- SunDiesel[™] is now used to blend German fuel.



Compared to Conventional Diesel Fuel, SunDiesel[™] Is Clear and Odor Free.

SunDiesel[™] Has Lower Boiling Points than Conventional Diesel.

Chemical Characteristics

Hydrocarbon Types (ASTM D1319)

	Conventional Diesel %	SunDiesel™ %	
Saturates	67.2	91.8	
Olefins	2.6	5	
Aromatics	30.2	3.2	
Carbon	86.59	85.79	
Hydrogen	12.67	12.54	

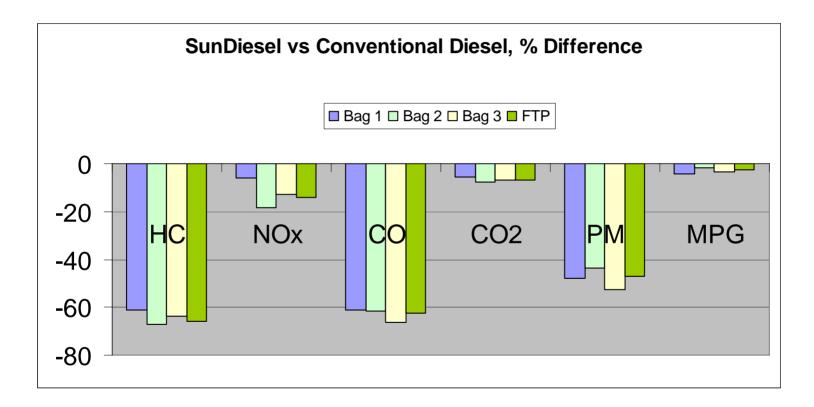
Trace Sulfur (ASTM D5453)311 ppm0.3 ppm

Fuel Comparison by Phoenix Chemical Lab

Characteristic	California Diesel	<u>SunDiesel™</u>
Heat of Combustion		
Gross	19633 Btu/lb	20312 Btu/lb
Net	18477 Btu/lb	19168 Btu/lb
Specific Gravity		
(ASTM D287)	0.8514	0.7612
Pour Point (ASTM D97)	-5°F	-5°F
Cloud Point (ASTM 250	0) 4°F	4°F
Viscosity (ASTM D445)	2.95 cSt	1.55 cSt
Odor (Subjective)	Unpleas	ant Pleasant

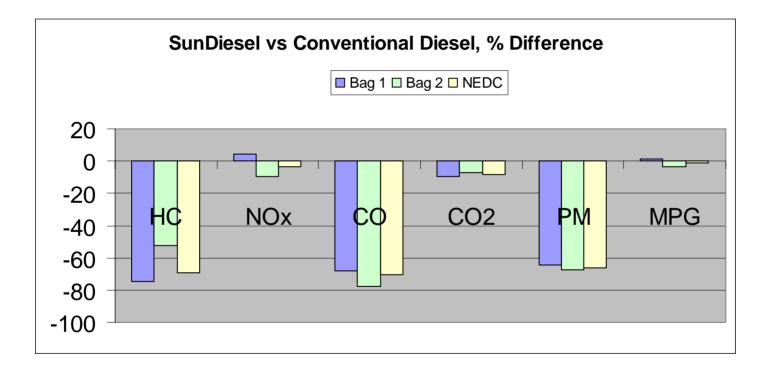
SunDiesel[™] Tested with a Mercedes A-170

- Initial testing was performed on a 1999 Mercedes A-170 with a 1.7- liter diesel engine.
- Tests were conducted included both on the road and in ANL's Advanced Powertrain Research Facility (APRF).
- Emission and fuel economy data were collected back-toback with both fuels.



Summary of SunDiesel[™] Vehicle Tests

- SunDieselTM was tested in the Mercedes A class diesel; improved drivability was noted, while the characteristic diesel exhaust odor was absent.
- Both cold FTP-75 and NEDC (New European Drive Cycle) were run at Argonne.
- THC, CO, PM, and NO_x emissions were significantly lower than conventional diesel fuel.
- Total CO₂ emission rate was 10% lower than the base fuel -- less fuel mass consumed.



Significant Improvement in FTP-75

NEDC Improvement Is Similar to Results from FTP-75.

SunDiesel[™] Has Lower NO_x Emissions than U.S. Biodiesel

AVERAGE BIODIESEL EMISSIONS COMPARED TO CONVENTIONAL DIESEL,
ACCORDING TO EPA

Emission Type	B100	B20
Regulated		
Total Unburned Hydrocarbons Carbon Monoxide Particulate Matter Nox	-67% -48% -47% +10%	-20% -12% -12% +2%
Non-Regulated		
Sulfates PAH (Polycyclic Aromatic Hydrocarbons)** nPAH (nitrated PAH's)** Ozone potential of speciated HC	-100% -80% -90% -50%	-20%* -13% -50%*** -10%

* Estimated from B100 result

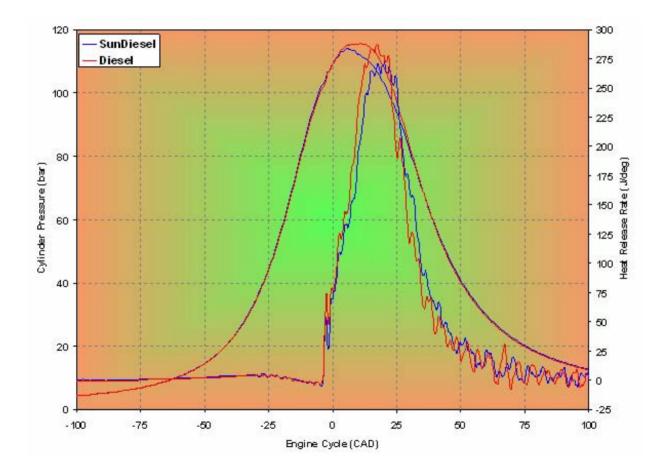
** Average reduction across all compounds measured

*** 2-nitroflourine results were within test method variability

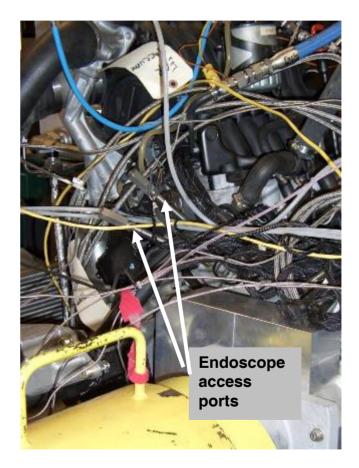
(more)

Additional Engine Combustion Research on SunDieselTM Characteristics

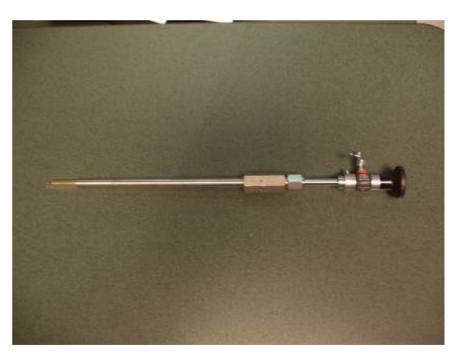
- Utilizing a single-cylinder Caterpillar engine to learn more about the SunDieselTM combustion process and emissions
- Performing PM measurements with mini-dilution tunnel and SMPS(Scanning Mobility Particle Sizer)
- Applying in-cylinder diagnostics (VisioScope) to gain further insight of the differences in combustion using the conventional and SunDiesel[™] fuels with a Mercedes A-class, 4-cylinder 1.7-L engine


Caterpillar Single-Cylinder Diesel Engine Used for Testing

- Single-cylinder Caterpillar engine is ideal for fuels and lubricants research.
- Calibration tests have been run to compare a wide range of fuels.
- Extensive data has been collected to correlate the results of heavy-duty engine performance in the past.


SunDiesel[™] Has Less Pre-mixed Burning than Conventional Diesel in a Caterpillar Heavy-Duty Engine.

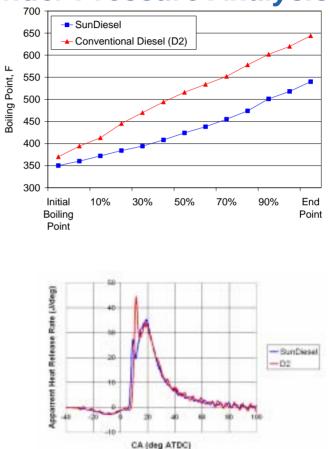
BGON


VisioScope Was Used to Study Combustion of SunDiesel[™] in a 4-Cylinder, LD Engine.

- Slight modification to engine provides access.
- Engine can be operated full speed/full load – all conditions.
 - 4000 RPM, 100% Load
- Other tools can be used simultaneously.
 - Emissions measurements
 - Pressure measurements
- Illumination capability is available (2nd access port).
 - Spray/mixture formation in pre-combustion phase
 - Part of next experiment matrix

Endoscopes provide low-intrusion optical access.

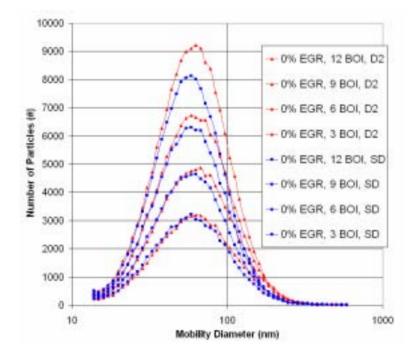
- Endoscopes are cooled to maintain optical quality and durability.
 - No fiber-optic bundles onepiece construction
 - Excellent optical quality
 - 2.5 consecutive hours during low soot conditions
- Small quartz window exposed to combustion gas
- Variety of cameras can be used.
 - 12-bit Video Graphics Array (VGA) camera currently used
 - One image per cycle excellent resolution (640X480)
 - High-speed camera can also be used.

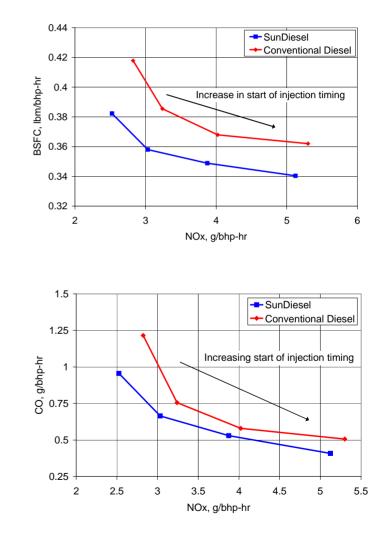


SunDiesel[™] and D2 Show Different Combustion Characteristics Based on In-cylinder Pressure Analysis.

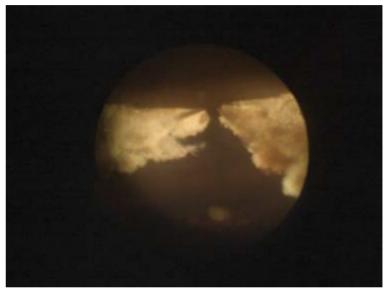
■ Distillation curves show SunDieselTM evaporates more easily than conventional diesel.

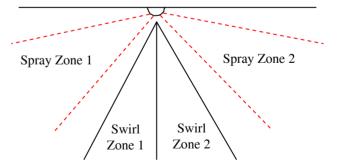
BCO


- Heat release curves show different combustion characteristics.
 - Lower "premixed burn" portion for SunDiesel[™]
 - Advanced combustion timing for SunDiesel[™]



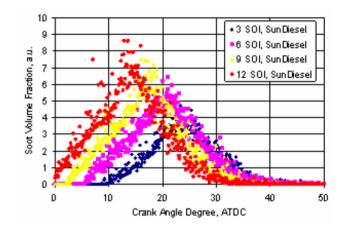
Emissions Results Show Advantages of SunDiesel[™].


 Significantly reduced PM, NO_x, CO,and BSFC

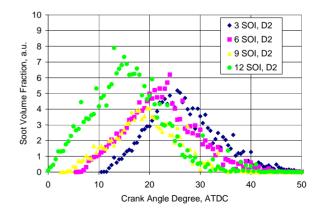


Valuable VisioScope Pictures Were Obtained at 2500 RPM and 50% Load.

- Automotive "cruise" point
- Consistent test conditions
 - 705 bar injection pressure
 - 26.16 µs injection duration
 - Injection timing set at 3, 6,9, and 12 deg BTDC
 - Allow load to "float" with timing change or fuel change
- Example of optical access shown
- Injector rotated to maintain window cleanliness


VisioScope SunDiesel[™] Results Show Significant Combustion Differences.

- Higher volatility, shorter premixed burn for SunDieselTM
 - Shorter time for mixing


200

- Generally increases soot
- <u>However, engine-out soot</u> <u>decreases!</u>
- Graphs on right are statistical representation of images.
- Between 30 and 40 deg ATDC, D2 Soot Volume Fraction (SVF) is higher than for SunDieselTM.

SunDiesel™

Diesel Fuel

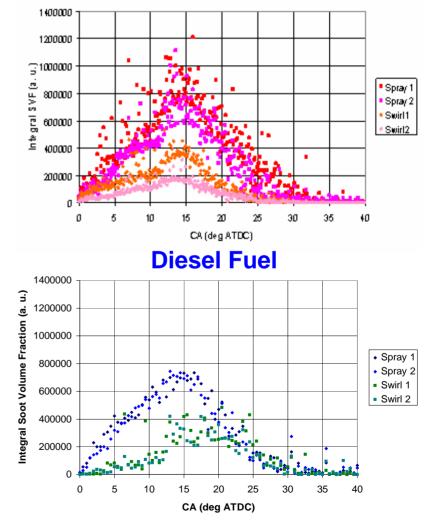
Detailed Image Analysis Sheds Light Upon Soot Mechanisms.

SunDiesel[™]

- 2-D details from imaging show where soot is formed/oxidized.
- Soot formation is actually higher for SunDiesel[™].
 - Shorter premixed burn
 - Poor mixing

BGO

- High soot production
- Soot oxidation is more rapid for SunDiesel[™].
 - Different soot characteristics
 - Low sulfur, low aromatic


Chemistry mechanisms dominate fluid mechanics for overall soot reduction! Spray Zone 2 Spray Zone 1

Swirl

Zone 1

Swirl

Zone 2

Points of Interest and Observations

- The full potential of SunDieselTM has not been explored (i.e. high cetane engine optimization); further testing will be necessary to determine the full extent of SunDieselTM capabilities.
- Blending with U.S. conventional diesel may produce a fuel that has both lower criteria emissions, especially NO_x, and greenhouse gases.
- Our continuing research encompassing vehicles, engines, and state-of-the-art measurements will provide needed emissions and combustion data to DOE so the potential of the fuel can be evaluated.
- The testing has gained the attention of OEMs and government entities.
 - U.S. Postal Service has requested SunDiesel[™] testing of their medium-haul fleet vehicles.
 - BMW and DaimlerChrysler have requested test results and data.