Heavy Duty Truck Engine

Achieving High Efficiency at 2010 Emissions

Christopher R. Nelson Cummins Inc.

DEER Conference August 23rd, 2006

Program Goals and Timing

<u>Phase I</u>

Phase IIA

Demonstrate

45% BTE

Demonstrate

- 45% **BTE**
- 2002 Emissions
 - 2.5 gm
 BSNOx
 - 0.1 gm
 BSPM

Complete

2007 Emissions

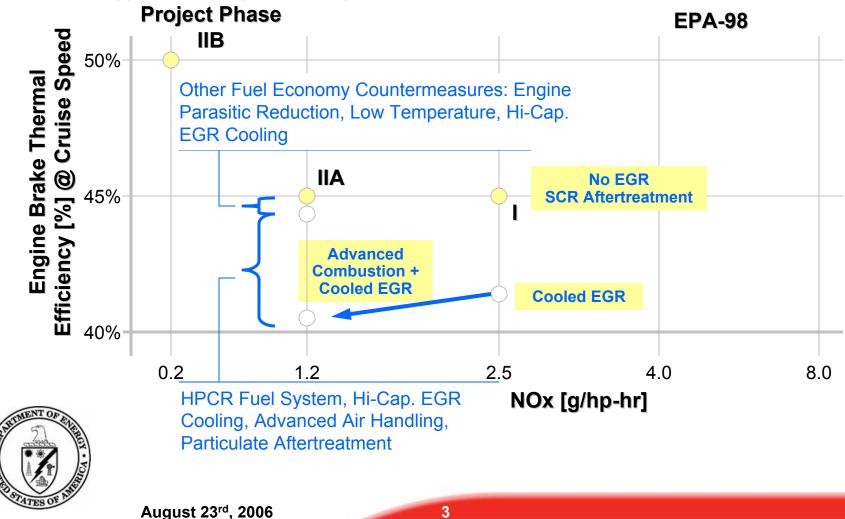
• 1.2 gm BSNOx

• 0.01 gm BSPM

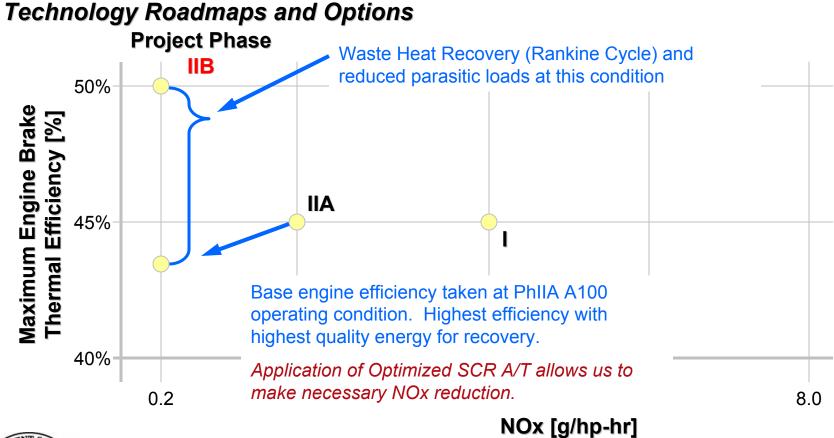
Phase IIB

Demonstrate

- 50% BTE
- 2010 Emissions
 - 0.2 gm BSNOx
 - 0.01 gm BSPM

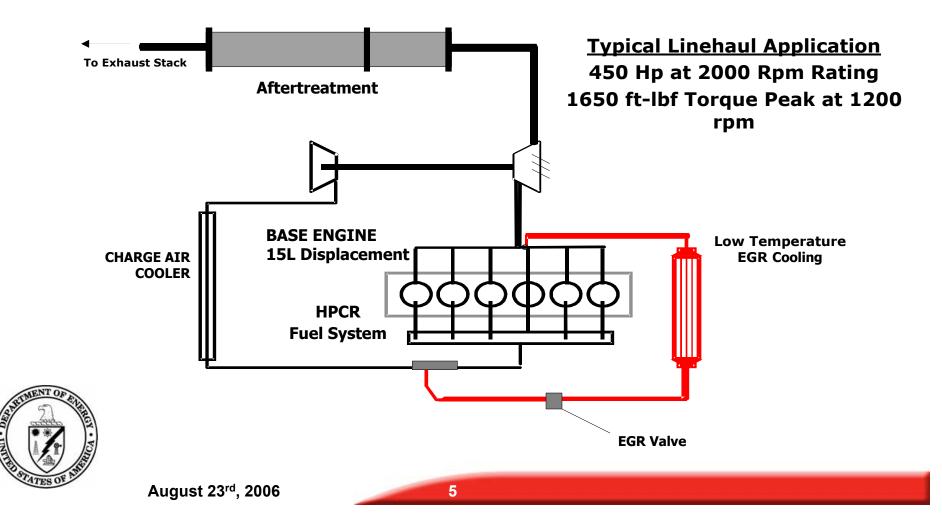


Previous Deliverables



Technology Roadmaps and Options

Phase IIB Approach



Phase IIB ISX Base Engine

Ultra-Low NOx ISX: Phase IIB Demo - Base Engine Architecture

Aftertreatment

NOx Reduction Technique

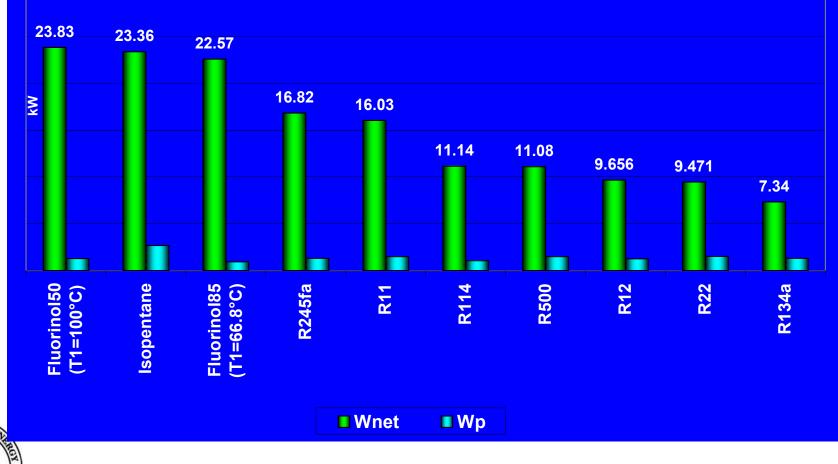
- Urea-SCR
 - A Urea-SCR Aftertreatment System operating at 85% Efficiency was assumed present in the high-efficiency test and demonstration

PM Reduction Technique

- Very similar to technology applied to Phase IIA.
- Robust RPF (DOC and PF)
 - An RPF operating at 90% Efficiency was assumed present in the high efficiency test and demonstration.

Pugh Concept Selection Matrix

HDTE – WHR

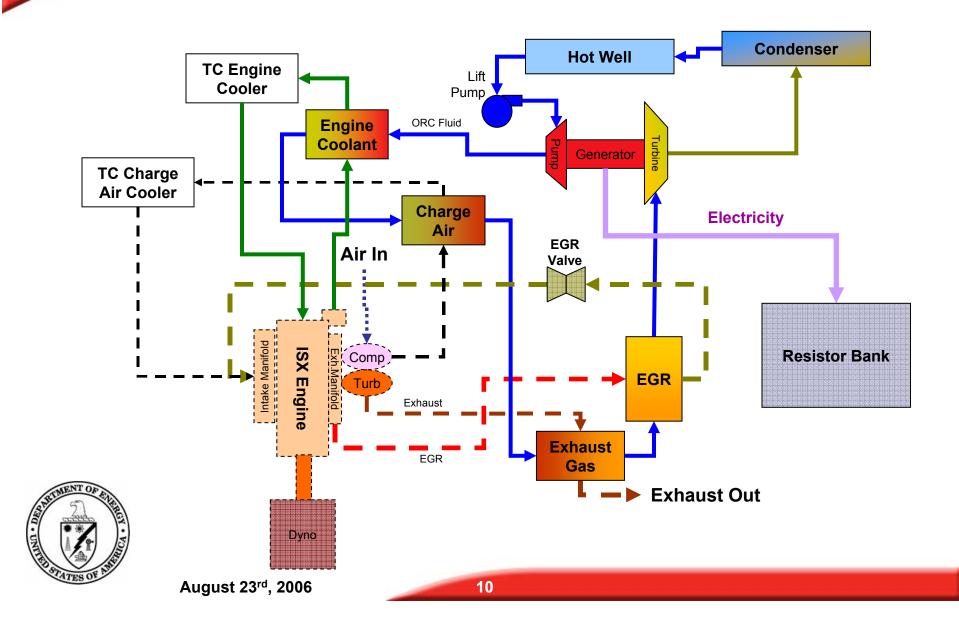

CONCEPT CRITERIA	RANKINE CYCLE	RANKINE CYCLE (REHEAT)	THERMO ELECTRIC SYSTEMS	ELECTRIC TURBO COMPOUND SYSTEMS	RANKINE CYCLE +THERMO ELECTRIC SYSTEM
	1	2	3	4	5
1. Power Generated	S	S	-	-	+
2. System Complexity.	S	-	+	-	-
3. Resistance to temperature.	S	S	-	S	S
4. Fuel economy increase obtained.	S	-	-	-	+
5. Compatibility with actual engines.	S	S	S	S	S
6. Number of components.	S	S	+	S	-
7. Effect over the emissions.	S	S	S	S	S
8. Weight of the system	S	S	+	+	-
9. Size of the system.	S	S	+	+	-
10. Durability of the system	S	S	S	S	S
11. Price	S	+	-	-	-
12. Ease of maintenance.	S	S	+	+	S
13. Ease of installation.	S	S	+	+	-
14. Power consumption	S	S	+	+	S
TOTAL +	0	1	7	5	2
TOTAL -	0	2	4	4	6
TOTAL S	14	11	3	5	6
Best possible choice	14	10	6	6	2
*No direct effect over emissions. Decrease emissions due to fuel economy increase.					

Working Fluid Research

Net Work Produced (kW)

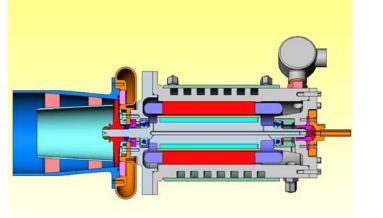
Fluorinol or 2,2,2 Trifluoroethanol and water

- CAS No. 75-89-8
- Molecular Weight 100.04
- Chemical Formula F₃CCH₂OH
- Flammable Liquid/Vapor
- More toxic than Ethlyene Glycol
- Used in previous ORC DoE demonstration


Excellent heat transfer properties with a high thermal stability - >550F

Fluorinol-50

<u>Fluorinol-50</u> (50-50 molal mix of Fluorinol and Water) provided the best performance -



High BTE Lab Demonstration Schematic

Turbine Generator

Designed and built by Barber Nichols, Inc.

Radial Inflow Turbine coupled to a Unison highspeed 4-pole generator

Capable of 60+kW

Generator cooled with process water

Integrated Feedpump

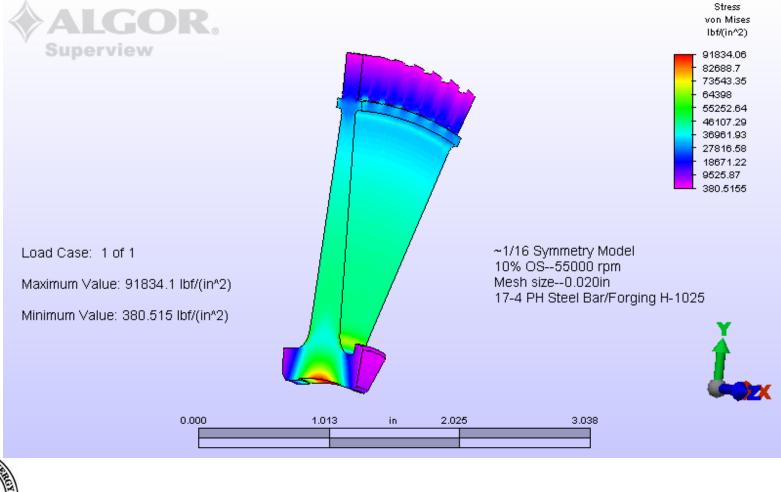
Hermetically sealed system

Approximately 10" diameter by 16" length (without diffuser)

August 23rd, 2006

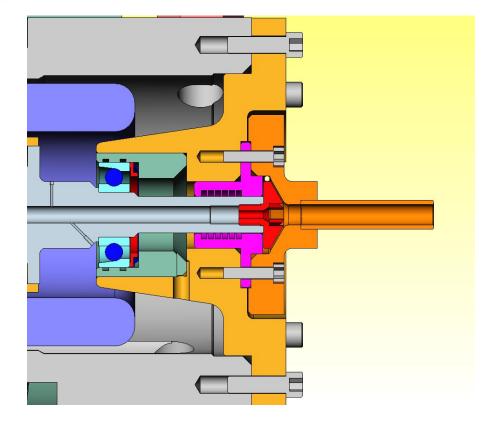
Turbine and Rotor

Permanent Magnet rotor Hybrid-Ceramic, selflubricated bearings cooled with F-50.


Axial impulse turbine 50krpm design speed 77% Efficiency Predicted 93 blades, 15 nozzles

17-4 PH Steel Bar/Forging

Turbine Rotor dynamics and Stress Analysis



13

Integral Feedpump

Small Impeller Feed pump
Hollow Shaft for Bearing
Supply
6 bladed pump
Aluminum
470 psia at 50 krpm

Heat Exchangers

Procured from FlatPlate, Inc.

Stacked Plate type. Copper brazing on jacket water, condenser and charge air coolers. Nickel brazing on Exhaust and EGR coolers.

August 23rd, 2006

Controls and Data Acq.

Turbine speed was controlled by PWM control of generator amperage to the resistive load bank.

Turbine speed was determined from measured AC voltage.

WHR System operating temperatures and pressures were monitored with the Labview data acquisition system.

Electric power was measured with a Flex-Core Watt Meter calibrated to our target generator frequency and voltage (1600 Hz and 500VAC).

Electric power was also measured by monitoring cooling water flow and temperature rise across our resistive load bank.

Good agreement between the two power measurements was observed.

A100 Engine Condition –

Engine Load – 378 Hp

Engine Speed – 1200 rpm

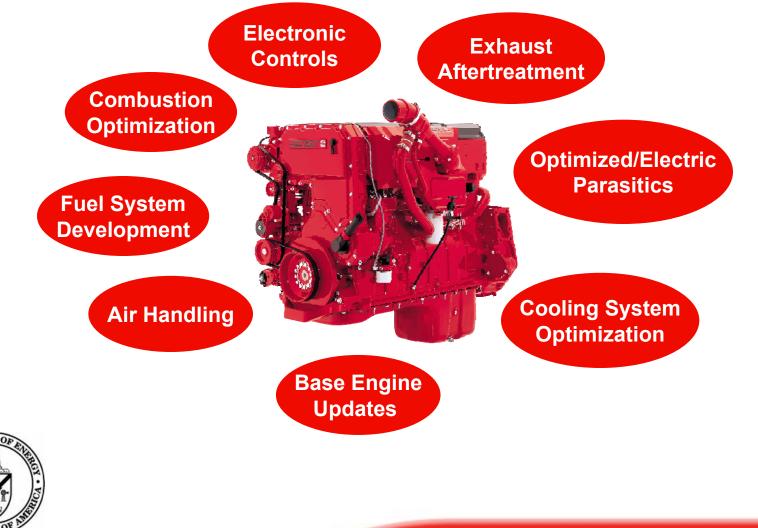
<u>Engine</u> bsfc – <u>0.322</u> or 43.2% BTE

Engine Out bsNOx – 1.39 gm/Hp-hr

SCR Aftertreatment achieves 0.2 gm BSNOx

42.5 kWe / 57 Hp Recovered Power

Combined Cycle bsfc – 0.279 or 50.0%BTE


Peak WHR Cycle Efficiency was 21.0%

August 23rd, 2006

HDTE and ISX Engine Architecture

Cummins Inc. thanks –

The United States Department of Energy

for their support throughout this program

