

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

FreedomCAR & Vehicle Technologies Program

THERMOELECTRIC DEVELOPMENTS FOR VEHICULAR APPLICATIONS

John W. Fairbanks FreedomCAR and Vehicle Technologies Energy Efficiency and Renewable Energy US Department of Energy Washington, D.C.

Diesel Engine-Efficiency and Emissions Research (DEER) Conference Detroit, MI August 24, 2006

One Level Above the Bridge

- > Enhanced View of the Horizon
- See "Perhapsatron" Mirage or an Widely Encompassing Range of High Efficiency Thermoelectric Energy Saving Applications?

Here is the Presentation.....You be the Judge

Thermoelectric Applications - Now to Near Term

- Historical
- Analytical
- Seebeck Effect Thermoelectric Generators
- Peltier Effect Thermoelectric Cooling/Heating

>DOE/NETL Vehicular Thermoelectric Generators

- 2 Teams SI Gasoline Engine Powertrains
- 2 Teams Heavy Duty Truck Diesel Engines

Emerging High Efficiency Thermoelectrics Recent Quantum Well Results at Hi-Z Technologies Potential Scale up Nanoscale Thermoelectrics High Rate Sputtering Equipment and scale-up challenges

U.S. Department of Energy

Energy Efficiency and Renewable Energy THERMOELECTRIC DEVICES

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

HOT SIDE

Nondimensional Figure of Merit

GPHS Radioisotope Thermoelectric Generator

U.S. Department of Energy Thermoelectric Properties of Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Conventional Materials

To increase Z, we want

 $S\uparrow, \sigma\uparrow, \kappa\downarrow$

but

 $S^{\uparrow} \Leftrightarrow \sigma \downarrow$ $\sigma^{\uparrow} \Leftrightarrow \kappa^{\uparrow}$

With known conventional solids, a limit to Z is rapidly obtained.

Best alloy: $Bi_{0.5}Sb_{1.5}Te_3$ ZT ~ 1 @ 300 K

Nanoscale Effects for Thermoelectrics

Interfaces that Scatter Phonons but not Electrons

Phonon in solid-state physics is a quantum of lattice vibrational energy. In analogy to a phonon (a quantum of light), a phonon is viewed as a wave packet with particle like properties

Definition of PHONON

□ The way phonons behave determines or affects various properties of solids.

Thermal conductivity, for instance, is explained by phonon interactions.

State-of-the-Art in Thermoelectrics

Thermoelectric Wristwatch

CITIZEN Eco-Drive Thermo Watch

- > Converts temperature difference between body and surrounding air into electrical energy
- > No battery change needed
- > When not being worn, second hand moves in 10-second increments (non power generation mode)
- > Number of semiconductors in thermocouple array: 1,242 pairs
- > Operating time from a full charge: Approx. 6 months (approx. 16 months in power saving mode)

U.S. Department of Energy Spacecraft using Radioisotope Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and afforda le hermoelectric Generators

TE Energy Recovery Benefit

2004 Jaguar XJ

- Use of aluminum results in a 500 lb weight reduction, with consequent fuel saving
- Currently, only luxury cars use Aluminum frame and body, due to high cost.
- If we can recover sufficient energy from the Aluminum manufacture process, it may become feasible to use it for mass-produced cars, due to reduced cost.

BMW's Magnesium Engine Block

U.S. Department of Energy Power-Harvesting QWTE Power Supply Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable for Navy Wireless Sensors

Quantum Well TE Module

Small size (1 in³) requirement satisfied using QW TEG

Provides power for wireless sensors:

5 mW at 3 V using 41°C Δ T from ship interior thermal environment

Generator dimensions:

1 in² footprint

1/2 inch height

U.S. Department of Energy Stryker Vehicle Under Armor Quantum Well Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

15% Efficiency Predicted with two 5 kW_e QW TE Generators Driven by <u>Vehicle Exhaust</u>

When Parked <u>APU Burner</u> to Provide Power Using Same Thermoelectric Generator

Quantum Well Thermoelectricrgy
and affordableGenerator

Five kW_e Quantum Well Thermoelectric Generator

- Contains 64 QW Modules in Octagonal Arrangement
- Integrated Coolant & QW Module Unit
 - Each QW Module in Compression
- QW Generator provides 5x power of current Bi₂Te₃ module in same space
 - Fits in 27 inch length and 10 inch diameter with cover plate

QW TE Modules & Coolant Heat Exchangers

TE Power Generation & Refrigeration

ZT ~ 2 to 3 would warrant TE technology development for large scale applications 18

U.S. Department of Energy Energy Efficiency and Renewable Energy

Thermoelectric Applications at United Technologies

Bringing you a prosperous future where energy is de

today...

POWER SOURCE

Batteries

CLIMATE CONTROL

None

..tomorrow

POWER SOURCE

Logistic fuel based system

CLIMATE CONTROL

- Thermoelectric based cooling/heating
- On-demand

IMPACT

 >30% weight savings over existing systems

Assumptions

12 hour mission @ 110°F ambient temperature

DARPA TTO Program Manager: Ed van Reuth

- Heat-exchanger design optimization for 200 W_e TE-based lightweight power generator
- Developed mass-optimized designs for air recuperator and cold-side TEG heat sink
- Design total system mass at 3 kg

R-134a refrigerant gas is the most common working fluid in vehicular air conditioners (A/C) since 11/15/95.
Replaced Freon gas which was detrimental to Ozone layer
R-134a has 1,300 times greater greenhouse gas impact than CO₂

- □ > Car air conditioners (A/C) leak 10 to 70 g/year
 - > 90 % personal vehicles in North America & Asia

and 87 % European cars have A/C

- Peltier thermoelectric HVAC systems significantly reduce
- Man's contribution to Greenhouse Gases
- While improving fuel economy

- 7-8 Billion Gallons/Yr of Fuel Use for Automotive A/C (NREL)
- □ ~6% of our National Light-Duty Fuel Use
- Centralized Automotive A/C Systems Require ~ 4-5kW of Power Use
- Smaller De-Centralized A/C Systems Could Require ~2-3 kW of Power
 - ZT> 2.0 Competitive with Refrigerant Gas Systems

- - -

- ZT ~ 1; COP ~ 0.9-1.0; Distributed HVAC System; P ~ 2 kW; Power Off Alternator
 - Decrease ~ 0.8 mpg/vehicle (0.8/27.5 ~ 0.029)
 - Increase ~ 1.9 Billion Gallons of Gasoline/Year Because of Low Alternator Efficiency
- ZT ~ 2; COP ~ 2; Distributed HVAC System; P ~ 1 KW; Power Off Alternator
 - Increase ~ 1.1 mpg/vehicle (1.1/27.5 ~ 0.04)
 - Save 2.6 Billion Gallons of Gasoline/ Yr
- Either ZT Case; Power From Thermoelectric Generator Converting Engine Exhaust Heat to Electricity
 - Increase ~ 3 mpg/vehicle $(3/27.5 \sim 0.11)$
 - Save ~ 7.1 Billion Gallons of Gasoline / Year

(Assumes: 3 kW for AC, 3 kW = 3 mpg, 130 M Gallons / Yr for Passenger Cars) Hendricks - PNNL

TODAY

FUTURE ?

Thermoelectric Hot & Cold Mini Fridge (1.5 ft³)

Side-by-side Refrigerator/Freezer (27.5 ft³)

Battery Temperature Impacts HEV/EV

Temperature affects battery operation

- > Round trip efficiency and charge acceptance
- > Power and energy
- > Safety and reliability
- > Life and life cycle cost

Battery temperature impacts vehicle performance, reliability, safety, and life cycle cost

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable Reference over the state of the st

Vehicle / Engine Selection

Selected vehicle platform (BMW 530i, MY2006)

- The selected vehicle is a state-of-the-art BMW sedan with a 3 liter displacement engine (BMW 530i, MY 2006, automatic transmission).
- The engine is the newest generation of highly efficient, in-line, 6-cylinder engines with characteristics representative of engines in the 2010 to 2015 timeframe

Selected engine platform (Inline 6 cylinder, 3.0 I displacement)

Where will Vehicular Thermoelectric Generator Electricity Directly Converted from Engine Waste Heat be Used?

Waste Heat Utilization

Increasing Electrical Power Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Requirements for Vehicles

- Increased electrical power needs are being driven by advanced IC Engines for enhanced performance, emission controls, and creature comforts
- **Stability controls**
- **Telematics**
- **Collision avoidance systems**
- **Onstar Communication systems**
- **Navigation systems**
- **Steer by-wire**
- **Electronic braking**
- **Powertrain/body controllers &** Sensors

These requirements are beyond the capabilities of the current generators and require supplemental electrical generation, such as from a TE waste heat recovery unit Juhui Yang GM

30

Beltless or More Electric Engine **U.S. Department of Energy** Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Supplies DC Bus Voltage from 120/240 Vac 50/60 Hz Input Supplies 120 Vac outlets from battery or generator power

Down

Supplies 12 V Battery from DC Bus

Compressed Air Module Supplies compressed air for brakes and ride control

66.1

Electric Water Pump

Higher reliability variable speed faster warm-up less white smoke lower cold weather emissions

Starter Generator

Motor **Beltless engine**

product differentiation improve systems design flexibility more efficient & reliable accessories

Auxiliary Power Unit

Supplies DC Bus Voltage when engine is not running - fulfills hotel loads without idling main engine overnight

Electric Oil Pump

Variable speed Higher efficiency

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clearly reliable and effectables Fuel Economy 1.5 to 2.0 %

BMW Series 5 Engine with Electric Water pump

Caterpillar Class 8 Truck Energy Audit of Engine **Project Objective:** Improve fuel efficiency of a heavy-duty, on-highway truck by 10%

Thermoelectric Generator

18 kW TEG

Phase I Results:

- 18 kW TE generator designed
- Full system projects 8 8.5% improvement in fuel economy
- critical customers demand, to buy, 2 9% improvement in fuel economy

U.S. Department of Energy Thermoelectric Recovery of Engine Waste Heat Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

at United Technologies

Gas Turbine "Hot Section"

- -

High Efficiency Thermoelectric Teams

General Motor Corporation and General Electric	, University of Michigan, University of South Florida, Oak Ridge National Laboratory, and RTI International
BSST, LLC.	Visteon, BMW-NA, and Marlow, Purdue, UC Santa Cruz, NREL, Teledyne, JPL
United Technologies Corporation	Pratt & Whitney, Hi-Z Technology, Pacific Northwest National Laboratory, and Caterpillar, Inc.
Michigan State University	Jet Propulsion Laboratory, Tellurex and Cummins Engine Company

Available Energy in Engine Exhaust

Primary contributors :

- Visteon, BMW and Teledyne
- Supporting this technology development:
 - NREL, University of California at Santa Cruz, Purdue University and JPL

BSST's Vehicular Thermoelectric ergy Generator Project

Visteon Developed Primary Heat Exchanger

Shell & tube heat exchanger for exhaust gas heat transfer

He/Xe working fluid transports thermal energy to TEG

Muffler

Exhaust gas bypass flow

BSST's 1st Generation Liquid to Liquid Heat Exchanger Design

High power density liquid to liquid heat exchanger Modeled performance validated through testing

Vehicle / Engine Selection

Selected vehicle platform (BMW 530i, MY2006)

- The selected vehicle is a state-ofthe-art BMW sedan with a 3 liter displacement engine (BMW 530i, MY 2006, automatic transmission).
- The engine is the newest generation of highly efficient, inline, 6-cylinder engines with characteristics representative of engines in the 2010 to 2015 timeframe

Selected engine platform (Inline 6 cylinder, 3.0 L displacement)

U.S. Department of Energy BMW Series 5, Model Year 2010, 3.0 Liter Energy Efficiency and Renewable Energy Bringing you a prosperous future where etcals of the Energy ine w/ Thermoelectric Generator

Power Generation Program Goals at RTI

U.S. Department of Energy

Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

- High performance Bi₂Te₃-based superlattice for radiator-based applications
- High performance bulk Silicon/Germanium, PbTe, and TAGS for exhaust-based applications
- Advanced materials based on nano-structured bulk (NSB) composites

U.S. Department of Energy GM's Thermoelectric Generators Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Subsystem Modeling

Joule heating from all electrical contacts are accounted for.

U.S. Department of Energy

Temperature Profile Through TEG

Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

U.S. Department of Energy RTI Nano-Structured Bulk (NSB) Materials Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

- □ Grow Si/Ge-based SL materials with enhanced ZT
- Remove film while preserving the nanostructure within the particles
- Combine SL film particles to form bulk pellet of enhanced ZT material
- Larger ΔT for NSB potential higher efficiency and more power output.

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Initial Results from RTI Nano-Structured Bulk Materials

- □ Films sent to Ames for conglomeration via hot pressing
- \Box A more aggressive cleaning etch composed of HF and HNO₃ was used
- Conglomeration is improving

Highlights of RTI Developments and Future Direction

- □ RTI SL materials out-perform bulk equivalent with higher ZT and efficiency at ∆T available in automotive applications
- □ Bulk segmented couples producing >300mW with >8% efficiency (@ $\Delta T_e \sim 600^{\circ}$ C)
- □ Bulk couple arrays producing >1 Watt (@ $\Delta T_e \sim 600^{\circ}$ C)
- Nano-structured bulk material work started with encouraging results – team with GM to enhance conglomeration

□ High Temperature Material Testing: RT- 500C

- N-type,P-type and undoped Marlow Elements (15)
- ² Skutterudites: GM (4 misch-metal compositions)
- 3. Clathrates: USF (5 compositions)
- 4. NIST: Half-heusler (HoNiSb)
- Other materials being tested:
 - > Oxides: Bulk ORNL, thin film PSU
 - LAST (similar to MSU by GM)

Japanese Vehicular Thermoelectric U.S. Department of Energy Energy Efficiency and Renewable Energy **Generator Program** Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Thermoelectric Power Generation for Diesel Engine Co-Generation System

53

Courtesy of Dr. Takanobu Kajikawa, Project Leader, Japanese National Project on Development for Advanced Thermoelectrics

N-type QDSL TE Performance

Nanostructured QDSL materials greatly improves ZT

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Medium-Grade Heat Sources

Low-Grade Heat Sources

Impact of ZT on Efficiency

Data: QW & Bi2Te3 Hi-Z; PbTe & SiGe JPL Properties Manual

6

4/21/2006

General Atomics Sputtering Capabilities

New coatings developed on R&D coater

New products developed on R&D Web Coaters

40" Web Coater (8-Ball)

Material production on 80" Web Coater

80" Web Coater (ALOC)

GENERAL ATOMICS

GA-AMT CAPABILITIES

Large Scale Sputter Coating System

4/21/2006

Production Roll Coater can Provide Precision Polymer Coatings on up to 80-inch Wide Materials

Solid State All-Electric Thermoelectric Energy Hybrid Vehicular Powertrain

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where energy is clean, abundant, religented to a prosperous future where

Transmission Electrical to Mechanical

- Find thermoelectric materials and system designs that can replace the internal combustion engine
- A system that can convert 25% of its input fuel energy to electric power can potentially replace some internal combustion engines
- A system that can convert 50% of its input fuel energy to electric power could potentially replace most gasoline and diesel engines and would even challenge fuel cells.

Francis Stabler, GM , MRS 11/28/05

- "If capacity to generate power from heat can be enhanced significantly
- No effort should be spared if there is the remotest prospect of realizing such high efficiency devices"
 - » Harold Wickes letter 12/05/05 to MIT Technical Review in response to article "Free Power for Cars"

Scale Up to Commercially Viable Thermoelectric Modules

- Reproduce Lab Scale Microstructure
- Minimize Contact Resistance
- Interlayer Diffusion
- Substrate
 - Provide Structural Support
 - Minimal Thermal Shunt
 - Measurements
 - Power Conditioning
 - Vehicle Integration
 - **Further Fundamental Investigation**

NO SHOW STOPPERS AT THIS TIME

Fabrication of Quantum Well Devices

Jack Bass Hi-Z Technology, Inc.

DEER Meeting, Detroit, Michigan August 2006

Quantum Well Film Comparisons to Current Bi₂Te₃

- Quantum well module with N- and P-type Si/SiGe on Kapton Substrate vs
- Current Bi_2Te_3 module at the same geometry and operating conditions ($\Delta T = 200$ C, heat flux = 10 W/cm²)
 - 3x power
 - 50 W for QW vs 14 W for Bi_2Te_3
 - 7x voltage
 - 12 Volts for QW vs 1.7 Volts for Bi₂Te₃
 - 10x higher specific power
 - 2.5 W/gm for QW vs 0.2 W/ gm for Bi_2Te_3
 - 10x lower raw materials cost
 - 0.10/Watt for QW vs 1.00/Watt for Bi₂Te₃

From Quantum Well Films to Thermoelectric Power Module

Two Couple Power Producing Device with Si/SiGe Quantum Wells and Mo Contacts on Kapton Substrate Yields Expected Power

Fabrication Approach

Kapton substrate

Results

	Experimental		Calculated		
	2 Couples	Results 2 Couples Measurements	26 Couples at ∆T = 40 ⁻ SC		
T _{COLD} = 26☜C T _{HOT} = 66☜C	Measured	Extrapolated to 26 Couples	Quantum Wells Si/SiGe	Bulk (Bi,Sb) ₂ (Se,Te) ₃	
	at ∆T = 40☜C	at ∆T = 40 ☜C	with ZT ~ 3.0	With ZT ~ 0.75	
Voltage (V _{oc})	225 milli Volt	2.93 V	3V	0.5V	
Power	0.371 milli Watt	4.82 milli Watt	5 milli Watt	1.5 mili Watt	
TT2 7					

Quantum Well Film Materials Summary

Quantum well TE material for 50 Watt module

- 0.32 m² with 11 micron multilayer film thickness
- Volume 3.5 cm³
 - Based on $\Delta T = 200 \text{ C}$, heat flux = 10 W/cm² gives » 64 cm²/Watt
 - Area/volume reduced with higher T Δ and heat flux
 - Raw materials
 - Si \$37.20/kg
 - Ge \$956.30 /kg
 - B \$94.15/kg
 - C \$16.10/kg
- 5μ Si substrates: \$15,128.25/m²
- Sputtered 2 μ Si on 1 Mil Kapton: \$21.14/m²
- High volume cost for QW TE module: ~0.20/Watt

Large Area Sputtering Leads to Rapid TE Module Assembly

Process Change - Folded Quantum Well Module Sputtering process forms module & eliminates eggcrate Improves efficiency and reduces costs

Path to Commercialization for Quantum Well Thermoelectrics

Dr. Lawrence Woolf General Atomics San Diego, CA

Presented at the

2006 Diesel Engine-Efficiency and Emissions Research Conference

Detroit, Michigan

August 24, 2006

A path to commercialization currently exists

- High rate sputtering on plastic films
 - "Web coating"
- Large-area, high-rate sputtering systems exist and are currently in use
- Kilometer-length rolls of meter-wide plastic film are continuously sputter coated in large vacuum chambers

General Atomics 36" wide film coater

General Atomics 40" wide film coater

General Atomics 2.2-meter (80") wide film coater

Si/Si-Ge QWTE: path to commercialization

Issue	State of Art
Material	Si is commonly used
Coating rate	1 µm thick at 100 m²/hr
	10 nm thick at 10,000 m²/hr
Coating cost for 200	~\$15/m ²
10 nm layers (2 µm total)	
Reproducibility/uniformity	~1%
Film length	0.5-5 km
Film width	1- 2.2 m

Scale-Up Challenges

Issue	Problem	Solution
Thermal treatment	Coatings require 300-900 °C	Heat treatment during or after deposition
Substrate	Width, cost, temperature	Kapton-1.2m, \$6/m², 400°C Proprietary substrates
Stress	Coatings > few microns can crack	Process optimization Need to validate
Processing	100-1000 layers	Requires high quality film handling (~50 layers done)
TE Properties	Achievable in large scale/high rate	Need to validate
B-C films	Large area sputtering uncommon	Need to validate

A path to commercialization currently exists:

High rate continuous sputtering onto plastic films

