Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks

> **Presented by: Rhonda Willigan** United Technologies Research Center

Diesel Engine Emissions Reduction Conference Detroit, Michigan August 24th, 2006

www.utrc.utc.com

Outline

- Department of Energy (DoE) Waste Heat Recovery Programs
- Program overview of UTRC-led team
- Thermoelectric Generator Design (Phase I)
- Progress-to-date (Phase II):
 - Thermal-to-Electric Conversion Efficiency Rig
 - Fabrication of Quantum Well (QW) Couples for Efficiency Testing
 - Fabrication of Heterogeneous Nanocomposites

DOE Waste Heat Recovery & Utilization Program

Program Overview

- Four-phase program focused on the development of thermoelectric (TE) materials, devices and systems for waste heat recovery from automotive exhaust
- Team is currently in Phase II of IV
- Specific focus is on QW film technology for Class 8 on-highway trucks
- Exploration of alternative deposition routes to reduce cost
- Exploration of alternative form factors (bulk nanocomposites) to reduce cost

Motivation for Waste Heat Recovery from Diesel Engines

Large opportunity to improve fuel economy and engine efficiency

Class 8 Truck Engine Energy Audit

Motivation for Waste Heat Recovery from Diesel Engines

Large opportunity to improve fuel economy with early payback

Daily Fuel Consumption and Potential Opportunity

Motivation for Waste Heat Recovery from Diesel Engines

Class-8 diesel trucks represent significant portion of fuel consumed

Caterpillar's MorElectric Truck Platform

Effective "Decoupling" of Essential Power Systems from Engine Gear-Drive

Thermoelectric Generator (TEG) Design

TEG heat exchanger design determined as part of Phase I of program

KEY FEATURES

Thermoelectric Heat Exchanger

Thermoelectric Device Design

TEG device design determined as part of Phase I of program

KEY FEATURES

TE Material Form(s)	Up to 350C, QW films	
	> 350C, QW nanocomposites	
TE Material Composition(s)	Silicon Germanium; Boron Carbide	
Substrate Material (if film)	Kapton™	
Heat Flux through Device	25 W/cm ²	
Specific Power (W/g)	~1.0 (Films), ~3.0 (Nanocomposites)	

TE Device (QW Nanocomposite)

Cost and Weight Breakdowns

TE devices constitute the largest cost of the TEG system; Heat delivery system constitutes the largest weight

Phase II Objectives

- Determine thermal stability of the fabricated QW- type structures
- Identify and overcome key risks associated with the integration of thermoelectric materials into a subsystem level device
- Define requirements and design the TE device TEG interface
- Develop a technical path for fabricating a prototype subsystem level heat management unit

Thermal-to-Electric Conversion Efficiency Rig

Inner wire heater design

Inner Wire Heater Design

- Easy to assemble / reassemble
- Heat load applied directly to sample hot side, minimizing heat losses
- Heat losses can be predicted and accounted for
- Heater compressed against sample, aiding in thermal contact and transfer
- Minimizes electrical and thermal contact resistance

Thermal-to-Electric Conversion Efficiency Rig

Baseline testing using bulk Bi_2Te_3 gives expected values for S, ρ and η

Conversion Efficiency Rig

Baseline Test Results for P-N Couple		Literature	Experimental	Percent Difference
Conversion Efficiency	η (%)	4.6	4.5	2.2
Seebeck Coefficent	S (μV/K)	365	328	10.7
Electrical Resistivity	ρ (mohm-cm)	1.33	1.30	1.9

Fabrication of QW film couple for testing

10 segments of each P and N make up the TE couple

Face view

Side view

QW Film P-N Couple

- P and N films deposited on KaptonTM
- Deposition area 1.25" x 1.25"
- 12 microns thick
- Deposited film laser sectioned into 12 smaller segments: 1.5 x 0.5 cm²
- 10 segments of each P and N film stacked to form the couple
- Films masked and contacts made via magnetron sputtering (Mo, Ag)
- Kapton spacer placed between P and N stack

Status To Date

- First QW film couple built / Testing underway
- Two additional QW film couples being built for test

Fabrication of Heterogeneous Nanocomposites

Material Approach

Slide 15 of 17

Fabrication of Heterogeneous Nanocomposites

N-type Silicon Germanium

Fabrication Approach

2 fabrication approaches being pursued in parallel:

- Mechanical mixing of Si nanoparticles into coarse Si_{0.8}Ge_{0.2} powder matrix
 → Si/Si_{0.8}Ge_{0.2}
- Precipitation of insoluble additive phase from molten mixture of silicon and germanium
 → X/Si_{0.8}Ge_{0.2}

Status to Date

- Mixing technique optimized to give high dispersion of nanoparticle phase (> 90%) into coarse powder
- Phase precipitation of select additives observed, however, at micron scale
- Initial ZT testing underway

Si / Si_{0.8}Ge_{0.2}

(2)

Scanning Electron Micrograph of X-Si_{0.8}Ge_{0.2} Composite

Slide 16 of 17

Fabrication of Heterogeneous Nanocomposites

P-type Boron Carbide

Fabrication Approach

2-step process developed:

- 1. Thermal decomposition of phenolic resin with amorphous boron creates nanostructured boron carbide; material ground and sieved prior to densification via hot pressing
- 2. Moderate crystal growth (still nanostructured) at higher temperatures during hot press compaction step

$$\begin{array}{ll} \rightarrow & \mathsf{B_4C}/\mathsf{B_9C} \\ \rightarrow & \mathsf{B_7C} \end{array}$$

Status to Date

- Several composite panels fabricated from various starting formulations targeting different product stoichiometries
- Nanostructured B₄C, B₇C and B₉C formed
- Initial ZT testing underway

Nanostructured boron carbide

Ground / Sieved boron carbide powder

Hot pressed boron carbide panel

Slide 17 of 17

Acknowledgements

Caterpillar

Andrew McGilvray George Romack Mahmoud Taher

Hi-Z

Jeff Aller Norb Elsner Saeid Ghatamy Dan Krommenhoek Don Snowden

PNNL

Wendy Bennett Peter Martin

UTRC

Jefferi Covington Don Hautman Wayde Schmidt

This presentation was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-04NT42280. However, any opinions, find-ings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.

Department of Energy

John Fairbanks

Aaron Yocum

