Safe and compact ammonia storage/delivery systems for SCR-DeNO_X in automotive units

Dr. Tue Johannessen

CTO Amminex A/S Lyngby, Copenhagen Denmark

Catalytic NO_X reduction

- Selective Catalytic Removal of NO_X: $4NO + 4NH_3 + O_2 \rightarrow 6N_2 + 6H_2O$
- Needed for **diesel** and **lean-burn** engines (3-way catalyst)
- Main problem: Safe and compact
 NH₃-storage on-board for dynamic dosing into tail pipe.

Urea solves the safety issue... but is not a simple plug'n'play technology

Challenges of using urea

- Freezing
- Moderate storage capacity
- Complex system
- Droplet conversion and mixing in exhaust line
- Hydrolysis catalyst (?)
- No dosing at idle
- Solid deposits
 - undesired products of decomposition
 - droplet impaction
- Enforcing / OBD

Components in the urea system

- Tank (incl. heater)
- Temperature sensor
- Level sensor
- Urea quality sensor
- Compressed air (some are airless)
- Heated urea transport flow tubes
- Supply module with filter
- Pump
- Supply line purging
- Spray nozzle
- Internal mixers in exhaust line

A couple of important questions:

- Is urea the only SCR enabler?
- Do OEMs have to wait for an AdBlue infrastructure?

Ammonia is there!

source: US DOE ammonia report.

Dense and safe ammonia storage: Controlled release from metal ammine complexes

Reversible ammonia storage: $MgCl_2 + 6NH_3 \implies Mg(NH_3)_6Cl_2$

Volatility-to-toxicity ratio*

Details on the ammonia capacity

kg NH_3/m^3

Getting NH₃/H₂ out of dense rods: a self-generated nanoporosity

A simple, low-cost ammonia delivery system

Example of system dynamics 46 hrs >99% NH₂-release

Driving cycle dynamics demonstrated

Tue Johannessen (tj@amminex.com)

Also very suitable for light duty

- 6-8 liters ammine-canisters equals 18-24 liters of AdBlue
- No extensive infrastructure and end-user intervention

Tue Johannessen (tj@amminex.com)

Light-duty test system

0.5-1 gall. sized prototypes

Recharging of canisters: Demonstrated

- Existing infrastructure for ammonia distribution
- Canisters can be recharged with storage material inside

Example of some of the

Tue Johannessen (tj@amminex.com)

DEER-2006

Enforcing / compliance

- No end-user intervention \rightarrow less risk of neglecting
 - No end-user handling; no false urea refill
 - Easy to detect empty "AdAmmine" system
 - Simpler OBD

Urea infrastructure

An example urea production and distribution pathway

"AdAmmine" Infrastructure

The storage capacity of "AdAmmine" is as high as solid urea. AdBlue is urea and approx. 70% water. The transported volume (in retail) of AdBlue is three times higher than "AdAmmine"

Prices and production: bulk chemicals

- Ammonia: 300-350\$/ton
- MgCl₂: 250\$/ton in bulk quality
- Solid ammonia storage material:
 - Combination of existing bulk production technology.
- No tank station infrastructure
- Canister re-saturation: Anhydrous ammonia
- Will always be competitive with the price of distributed AdBlue.

Value propositions – both soft and hard

- Car/truck: Low cost of storage/dosing system (low impact on vehicle cost)
- Car/truck: High capacity (lower impact on design)
- Driver/user: No end-user intervention (user-friendly)
- Driver/user: Low raw-material cost (inexpensive for end-users)
- Authorities: Easier to enforce!

Summary

- Higher capacity than *AdBlue* (factor 3 by volume; 2.7 by mass)
- Fewer moving parts in the Amminex dosing system
- No complex urea chemistry
 - Long-term storage possible (no decomposition in tank)
- No issues of freezing
- Flexibility in dosing point; fast mixing with exhaust gas
- No drop in exhaust temperature due to water evap.
- A simpler infrastructure: "car dealers, repair shops and fleetoperators".
 - Storage canisters replaced at service intervals. No end-user intervention. Avoiding the need for *AdBlue* at every gas station
- Lower price of raw materials (lower than *AdBlue*).
 - *OEM canister*: salt $(MgCl_2)$ + ammonia + steel
 - recharging: anhydrous ammonia
- Ammonia is available world wide. $MgCl_2$ is 10% of sea salt.

Ammonia-enabling technology