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Historical Perspective of HD Brake 
Thermal Efficiency 

HECC DoE Effort 
Advanced Mixed Mode Combustion 

Air Handling (Air on Demand – Electronically Assisted) 
HPCR Fuel System Technology 

Closed Loop Combustion Control 

Advanced Engine Concepts 
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Meeting 2010 Steady State Emissions 
ISX 15L Engine 
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Integration of Cummins Business Component

Technologies in a Cost Effective Manner

ISX Technology Roadmap

for Efficiency Improvement
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Combustion Strategy for Fuel 
Economy Improvements 
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Impact of Injection Pressure on 
Transient Particulate Matter 
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Increasing Injection Pressure 

SSoot formation depends on equivalence ratio,
temperature, and time
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CFD Simulation 

Increasing Rail Pressure (bar) 
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Extending the Range of Early PCCI 
Cannot inject in this range 

(ign. delay too short) 
ignition delay 

Late PCCI ignition 
and burningcompression 

temperature 

PCCI ignition 
and burning too short 
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Mode Advantages Disadvantages 

Early PCCI 

- Good stability 
- Good fuel consumption 

- High peak cyl. pressure 
- Limited BMEP 
- Noise  
- Higher cooled EGR rates 

Late PCCI 
- Low peak cyl. pressure 
- High BMEP capability (20 bar) 
- Low noise 

- Narrow stability range 
- Higher fuel consumption 
- Needs combustion sensor 
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Formaldehyde 
PLIF 

SOI=-5 ATDC, O2=14.7% 

20 ATDCInjector 

Equivalence Ratio Contours 

1% to 3% bsfc reduction 

Sandia-Cummins N14 

Images Courtesy of Mark Musculus - SNL 

Engine data from 
2–8 bar BMEP with 
triple injection and 

intake temp. 
management 

Engine data from 
2–8 bar BMEP with a 
combination of single 

and dual injection 

Reducing HC and CO for Early PCCI 
Efficiency Improvement 
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Improving Transient Air Flow 

First Representative Transient Segment of FTP – ISX Engine 
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EGR 

NOx Mass Flow 

Actual Charge Flow 

Commanded Charge Flow 

• Actual EGR flow is following commanded flow well 
• EGR Pump technology can improve 

• Air flow is the issue 
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Commanded Charge 
to Meet 2010 Transient Emissions 

E-Boost On 

High Shaft Inertia 
Solutions 

First Representative Transient Segment of FTP – ISX Engine 

Electric Turbo – VGT Transient Air Handling Simulation 

Electronic Turbo with Reduced Intake Volume 

More than twice the shaft inertia is used for E-
Turbo model, since it’s expected that shaft 
inertia would raise with the electric motor 

mounted on the shaft. 

Baseline VGT 
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Controls Development for Transient 

Emissions
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HD Brake Thermal Efficiency 

Accomplishments


HECC Progress to Date 

Projected Improvements with 
Integration of New Component Technology 

to Meet Transient Emissions 

HECC Target 
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