

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain

DEER, August 13-16, 2007

Delphi On-Board Ammonia Generation (OAG) Based Exhaust Aftertreatment System

Delphi OAG Operating Principle

- 2-way Valves
- When valve 1 is open, valve 2 is closed; when valve 2 is open, valve 1 is closed
- Reformat is injected with valve 1 closed

Delphi DFR Dynamometer Site

- 3 Emission Sampling System: Engine, intermediate, Tailpipe HC, CO, NOx, O_2 , CO_2 Tail Pipe N_2O
- DC Dynamometer

 Steady States (13 Mode)

 Dynamic (FTP)

Delphi OAG Standardized Testing

- Test Cell
 - '06 6.6L Duramax Engine
 - 3 Sample Benches: EO, Int, TP
 - No heat exchanger
 - DC Dyn. capable of standardized schedules
- Hardware
 - 14L LNT catalyst
 - 15L SCR catalyst
 - 3.5" dia. exhaust
 - Delphi Diesel Fuel Reformer (DFR) providing reformate
- Test Schedules
 - Steady State
 - » ESC
 - » Not To Exceed (NTE)
 - » WHSC
 - Transient
 - » WHTC
 - » FTP-HDD

Results Reported at 2006 DEER Conference, ESC 13 Mode

Test Procedures

- Static Cycles
 - Conducted with "manual" control of divert valve and reformate flow.
 - ESC
 - Not To Exceed 1 & 2 (NTE1, NTE2)
 - WHSC
- Transient Cycles
 - Required automated valve and reformat controls.
 - WHTC
 - FTP-HDD
- When cold starting, reformate is combusted to heat LNT so as to start adsorption of NOx much earlier into the test.

Static Test Results

ESC Mode Test Results

Composite ESC, NTE, and WHSC, Test Results

DEER 2007

Transient Test Results

Catalyst Temperatures WHTC & FTP with Refomate **Combustion LNT Heating**

Transient Test Results

Summary

- The OAG system showed high NOx conversion over both static and transient test conditions
 - Testing at Static Cycles ranged 88-92% NOx conversion
 - Testing at Transient Cycles ranged 72-80% NOx conversion
- Reformate can be combusted to decrease the time required for catalysts to reach operating temperatures

Conclusions

- The Delphi OAG system showed high NOx conversion over a wide range of temperatures and flows
- The Delphi OAG system does not require any additional reductant such as urea.
- The Delphi reformer can be used to enhance exhaust temperature management
- Aftertreatment is decoupled from engine management, offering a high degree of operating flexibility.
- Since the Delphi OAG system does not require engine control modification, system it is applicable to retro-fit applications as well as OEM
- The Delphi OAG system can also be used to regenerate a Diesel Particulate Filter (DPF) in a controlled manner so as to enable low cost cordierite use.

Delphi On-Board Ammonia Generation System

Thank you for your attention

