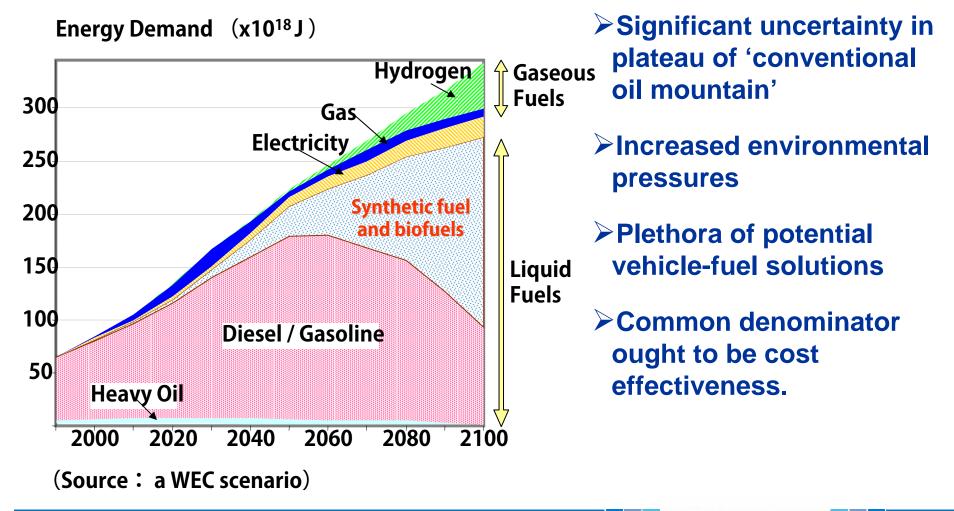


Verification of Shell GTL Fuel as CARB Alternative Diesel

Ralph A. Cherrillo, Mary Ann Dahlstrom, Anne T. Coleman – Shell Global Solutions (US) Inc. Richard H. Clark – Shell Global Solutions (UK)

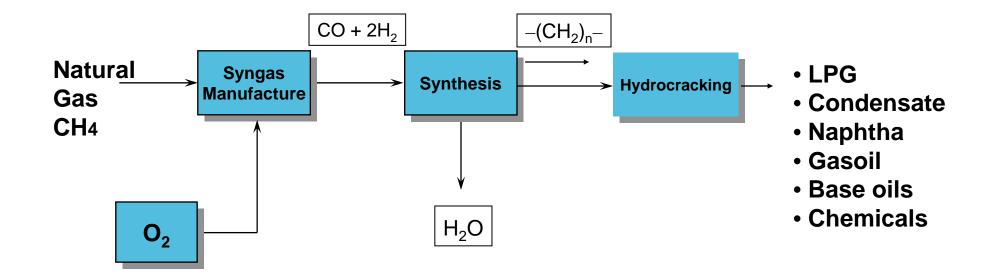


Outline

• Introduction

- Future Fuel Demand
- GTL as a Future Fuel
- GTL Demonstrations
 - CARB Verification Testing
 - Fleet Tests
- GTL Outlook

Future Fuel Demand A Forecast of Global Automotive Fuel Demand

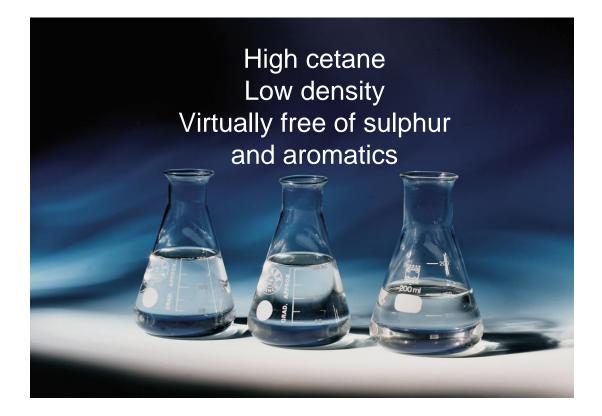


GTL Fuel – Synthetic and Alternative Fuel

- GTL Fuel is one class of <u>Synthetic</u> fuels, which refers to <u>liquids from</u>:
 - » gas (GTL)
 - » coal (CTL)
 - biomass (BTL)
 - waste (WTL)
- Alternative Fuels comprise synthetic fuels, biofuels, and fuels such as water-fuel emulsions, ethanol-diesel blends

What is Gas to Liquids?

GTL is a process that converts natural gas to clean fuels and high quality products via the Fischer-Tropsch process



Shell's proprietary process: Shell Middle Distillate Synthesis (SMDS)

Why -- Shell GTL Fuel

- Strategic diversification of energy supply
- Compatible with existing infrastructure
- GTL provides a bridge to Biomass to Liquids and Coal to Liquids technologies
- Life cycle analysis: GTL vs. Refinery system
 - GTL less impact on on air acidification and smog formation
 - Comparable greenhouse gas emissions
- More cost effective in reducing emissions than competing fuels [B2, B20, LNG, CNG]
 - Derived from independent WTW study by TIAX (8/2003)

Shell GTL Fuel – a premium quality diesel fuel

Outline

- Introduction
 - Future Fuel Demand
 - GTL as a Future Fuel
- GTL Demonstrations
 - CARB Verification Testing
 - Fleet Tests
- GTL Outlook

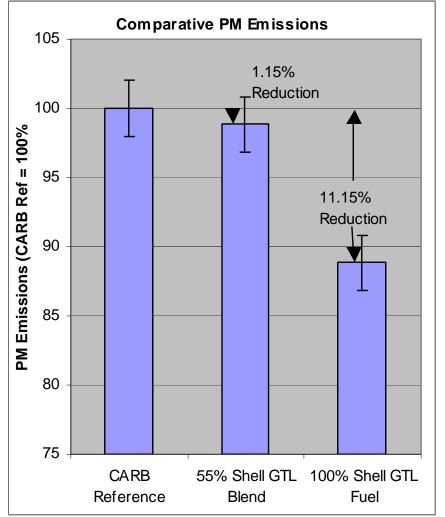
CARB Verification as Alternative Diesel Fuel

- <u>Recognized protocol</u> for demonstrating emission benefits of <u>alternative</u> fuel
- Rigorous testing and data review process
- Allows <u>demonstration of emission benefits</u> <u>over and above ULSD CARB diesel</u>, which has been considered the 'optimum' for clean diesel in the U.S.

CARB Protocol– Emissions Reduction Testing Fuels

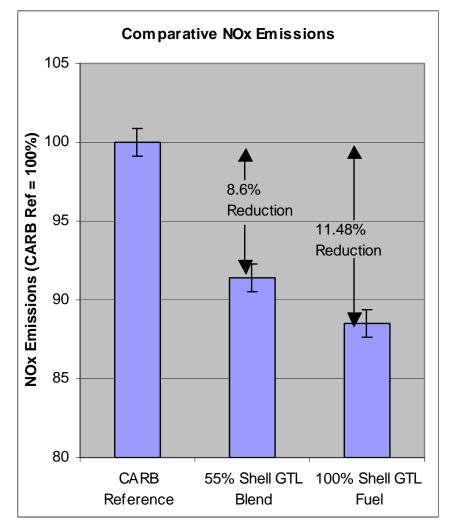
- Two candidate fuels
 - 100% Shell GTL Fuel
 - 55% Shell GTL Fuel / 45% CARB diesel
- <u>Reference fuel</u>
 - Commercial CARB ULSD

CARB Protocol – Emissions Reduction Testing Test Protocol


- Hot-start transient emissions test (CFR 40, Part 86, Subpart N)
- Alternative 3 protocol (CARB Interim Procedure for Verification of Emission Reductions for Alternative Diesel Fuels)
- 1991 DDC Series 60 heavy-duty diesel engine
- HC, CO, CO₂, NO_x, PM and SOF

Properties of Fuels Tested Shell GTL Fuel vs CARB Reference Fuel

			Shell	CARB	
			GTL Fuel	<u>Ref Fuel</u>	
Parameter	<u>units</u>	<u>method</u>			
API Gravity	API@60 °F	D287	48.8	41.6	
Cetane Number	rating	D613	>76	50.7	┝─
Sulfur	mass ppm	D5453	0.3	0.6	┝─
Nitrogen	mass ppm	D4629	<1.0	12.8	-
Total aromatics	mass %	D5186	2.9*	22.3	-
PAH	mass %	D5186	1.6*	1.5	
Distillation, T90	deg F	D86	627	561	


*Historical plant QA value for total aromatics is 0.1m%, for PAH < 0.1m%

CARB Protocol – Emissions Reduction - PM

 Shell GTL Fuel provides a significant PM emissions reduction over CARB ULSD reference fuel

CARB Protocol- Emissions Reduction - NOx

- Shell GTL Fuel provides a significant reduction in NOx compared to ULSD CARB reference fuel
- Consistent with both CARB and EPA Emissions Models, which predict reduced NOx for fuels with higher cetane number, lower aromatics

CARB Protocol–Emissions Reduction– Results 100% Shell GTL Fuel and 55% Shell GTL Fuel Blend

	% Benefit							
	СО	CO ₂	HC	SOF	NO _x	PM		
100% Shell GTL Fuel	10.58	2.39	52.15	18.2	11.48	11.15		
55% Shell GTL Fuel Blend	5.33	2.12	39.19	22.0	8.60	1.15		

Shell's GTL Fuel marketing activities have demonstrated the product is robust in all scenarios.

GTL Consumer Groups: Fleet Users

Early targets are commercial fleets, operating within a city environment:

- Buses
- Taxis
- Waste collection vehicles Light and heavy duty delivery vehicles

Shell GTL Fuel from Bintulu has completed fleet trials in California.

A Yosemite Waters truck, operated on Shell GTL Fuel

Home base refuelling (not retail stations)

GTL Fleet Trials in California (1)

- <u>Partners</u> California Department of Transportation, Sacramento Shell
- TimingCompleted May 2002
- **Purpose** Durability, seal compatibility
- **Structure** Blind 30-day switch from CARB LSD to GTL Fuel

Key Findings

- <u>No leaks</u> of fuel from any of the vehicles
- No increases in maintenance for any of the vehicles
- <u>No performance issues related to fuel</u> in terms of power and performance
- Fleet operator and drivers very happy with the performance of the fuel

GTL Fleet Trials in California (2)

<u>Partners</u> Yosemite Waters, DOE NREL, SCAQMD, Johnson Matthey, International Navistar, Shell

<u>Purpose</u>

- 1. Demonstrate technologies robust under real operating conditions
- 2. Scientifically evaluate the emission reductions that can be achieved
- 3. To provide key data to legislators, commercial users and the public, for important air quality decisions and legislation

Key Findings (SAE 2005-01-3769)

- Statistically significant reductions of NOx, PM, HC and CO with Shell GTL Fuel and JM CCRT DPF
- 20,000 miles accumulated to demonstrate durability
- Test vehicles running with GTL Fuel reported to be indistinguishable from control vehicles in terms of performance
- Test vehicles running on GTL Fuel experienced no additional maintenance requirements compared to control vehicles

Outline

- Introduction
 - Future Fuel Demand
 - GTL as a Future Fuel
- GTL Demonstrations
 - CARB Verification Testing
 - Fleet Tests
- GTL Outlook

Shell GTL development

- \rightarrow Integrated world scale Qatar project based on proven technology
- \rightarrow A platform for exciting new industry based on unique new products

Long lead times & entry hurdles characterize GTL

development

In Summary

- Shell is building a world-scale GTL plant in Qatar
- Shell GTL Fuel is a premium quality diesel fuel
 - •High cetane
 - Low density
 - •Virtually free of sulphur and

- Performance has been demonstrated in fleet trials conducted in the US and other parts of the world
- Emissions benefits compared to CARB ULSD have been demonstrated by CARB Verification Testing