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Engine combustion problems could theoretically be solved by
Integrating a chemical kinetics and a fluid mechanics code

* KIVA calculates

temperaturedistributions

and CHEMKIN or HCT

calculates composition and .

heat r elease |

e Appropriate spatial
resolution and a detailed
mechanism ar e necessary




The physicsof HCCI combustion can be well captured
with a sequential fluid mechanics-chemical kinetics model

High resolution CFD L ower resolution chemical kinetics
simulation (10°-10° cells) discretization (10-100 zones)

Fluid mechanics sets the Combustion is very fast

temperature distribution and therefore can be

where autoignition occurs analyzed without
considering mixing or w
turbulence @




Model has been very successful in predicting HCCI combustion
In multiple geometries, fuels, and operating conditions
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Problem: Can we predict exhaust composition,
down to the small hydrocar bon species?
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Analytical chemistry group at LLNL has measured concentration
of 40 inter mediate hydrocarbonsin Sandia HCCI engine exhaust
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We have conducted high fidelity analysis of Sandia engine:
Our KIVA3V grid resolvesthe combustion chamber in detail
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Our model can predict pressure with good accuracy
for a broad range of experimental conditions (0.08<¢<0.28)
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ISO-OCTANE, g/kgFuel

ACETONE, g/kgFuel

The model also generates accurate predictions
of multiple inter mediate hydrocar bon species
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Our modédl calculatesthe location in the combustion chamber
wher e hydrocar bon species are produced
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Unprecedented prediction of specific exhaust species
possible dueto synergiesin collaborator’s capabilities

Analytical chemistry for
detailed exhaust speciation

High quality HCCI |
engine experiments G
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Extensively validated
chemical kinetic models

High fidelity engine analysis



Much interest exists on Premixed Charge Compression
Ignition (PCCI) enginesfor high load and improved

combustion control
Ay

Animationl _proc

PCCI through high EGR that does not PCCI through early
mix well with fresh charge (VVT CAI) direct injection




Can we extend our sequential fluid mechanics-
chemical kinetics model to model PCCI combustion?

High resolution CFD L ower resolution chemical kinetics
simulation (10° cells) discretization (10-100 zones)

Fluid mechanics sets the Combustion is very fast
temperature distribution and therefore can be
where autoignition occurs analyzed without

considering mixing
turbulence O@"




We can try analyzing PCCI by doing a two-directional mapping,
from KIVA to CHEMKIN and from CHEMKIN back to KIVA

High resolution CFD .

Chemistry handled by multi-
zone detailed kinetics solver
(10-100 zones)

solver handles mixing,
advection and diffusion
(~100k cells)

Solutions are mapped back
and forth between solvers

throughout the cycle




We are wor king on applying and validating
KIVA-MZ-MPI to adirect injected engine

Sandia Automotive HCCI Engine
operated by Dick Steeper
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Direct injected engine at Sandia Livermore (Steeper)




We arewor king on Diesel PCCI Modeling (I nternational)
and Kiva4-M Z development (L os Alamos)

Kiva3v-MZ-MPI investigation of
ITEC Early DI PCCI
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Massively Parallel KIVA4 3D Grid for
Sandia HCCI engine

KIVA4-Unstructured Grids greatly help
mesh quality for engine geometries
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