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Role of Friction & Wear in Vehicles 
� Traditionally, the role of friction and wear in transportation has addressed 

issues associated with reliability and durability – engineering the tribological 
system (consisting of lubricants & additives, materials & coatings, and 
component geometry/finish) to improve component lifetime and mitigate 
catastrophic failure (e.g. scuffing) 
–	 Changing environments continue to challenge the ability of current 

tribological systems (low-lubricity fuels, low SAPS lubricants, greater 
loads, EGR, etc.) 

� Increasing fuel prices, tighter emission standards, and concerns over global 
warming gases are now driving researchers worldwide to develop more 
efficient tribological systems to reduce parasitic friction losses. 
–	 More energy is lost to friction than is delivered to the wheel. 

Approximately 10 % of the fuel consumed in transportation is lost to 
friction in the engine. Another 6% is consumed by friction in the driveline 

� Fuel savings in the range of 3-5 % can be achieved by reducing parasitic 
engine losses, while another 2-4 % can be saved by reducing parasitic 
driveline losses 



More Energy is Lost to Friction Than Delivered to the Wheel 

� Energy Map- Passenger Vehicle EPA Cycle 
–	 Roughly 10% of energy input consumed by


friction


–	 >1 million barrels/day lost to friction in

transportation
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Strategy of Parasitic Friction & Wear Research 
� Develop and Apply Mechanistic Models of 

Friction (Boundary and Viscous) Losses to 
Predict Parasitic Losses as a Function of 
Engine Conditions (Load & Speed), and 
Tribological Conditions (Boundary Friction and 
Oil Viscosity) 

–	 Scale fuel consumption as a function of FMEP 

and IMEP for a prototypical HD diesel engine


–	 Predict the impact of low-friction (boundary-layer 

friction) and low-viscosity lubricants on fuel 

economy


� Evaluate/Screen the Potential of Candidate 
Surface Treatments and Additives to Reduce 
Boundary Friction Under Lab Conditions 
Prototypical of Engine Environments 

–	 Benchtop friction tests using prototypical engine 

components


–	 Impact of materials, coatings, surface texture, 

and lubricant additives and viscosity


� Validate Codes/Models and High-Potential 
Solutions in Fired Engines Using In-Situ 
Friction Measurement Techniques 

RINGPAK 
PISDYN 
ORBIT 
VALDYN 



              

     

Integrated Mechanistic Models to Predict Impact of Low-Friction 
Surfaces and Low-Viscosity Lubricants on Parasitic Energy Losses
(FMEP) and Fuel Economy 
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FMEP calculated at 8 different modes and 

weighted to predict effect on fuel consumption •Rocker bushing *

for a HD driving cycle •Rocker tip to valve *


•Pushrod to rocker interface * 

•Piston pin bearing * 
•Rings * 
•Piston Skirt * 

•Cam - follower interface * 
•Cam bearings * 
•Follower - pushrod interface * 
•Timing drive 

•Journal bearings 
•Crankshaft windage 

•Crankshaft main bearings 
•Main seals * 

•Oil Pump 

FCSF = 
(Fuel Consumption Scaling Factor) 

IMEP + ΔFMEP 
IMEP 

•Fuel injection system 

* interface considered in current study 



Role of Boundary and Hydrodynamic Lubrication Regimes
- Tribological System 

� Different regimes of lubrication 

depending on the degree of 

contact between sliding 

surfaces


� Boundary lubrication 

characterized by solid-solid 

contact – asperities of mating 

surfaces in contact with one 

another


� Contrast boundary lubrication 

with full-film lubrication in 

which mating surfaces are 

separated by a film.


� In between, mixed lubrication 

occurs.
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Boundary and Hydrodynamic Friction: Model Impact on
FMEP and Wear Severity 
� Total FMEP is the sum of the Asperity friction and the hydrodynamic friction 

– Boundary FMEP decreases with increasing lubricant viscosity – shifting from BL to ML regime 
– Hydrodynamic FMEP increases with increasing viscosity 

Piston FMEP versus Viscosity Grade Normalized Piston - Liner Contact Severity 
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Low-Friction (Boundary-Friction) Surfaces Enable Use of
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Low-Viscosity Lubricants to Provide Fuel Savings up To 5% 
� Low Boundary Friction Only – up to 1% savings 
� Low Boundary Friction AND Low Viscosity – 3-5 % savings 
� Estimates of Payback on Technology 

Skirt: Impact of Reduced Asperity Friction on Fuel 
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Identifying Low-Friction Technologies that Enable Low-

Viscosity Lubricants and Maintain Durability/Reliability


� Measurement of friction using 
benchtop tribometers providing 
data on the potential of advanced 
engineered surfaces and 
lubricants to provide low-friction 
tribological systems 

– Benchtop test configurations 
• Unidirectional Sliding 

–	 Pin-on-Disc 
–	 Block-on-Ring 

• Reciprocating Sliding 
– Ring-on-Liner 

–	 Candidate low-friction 

technologies


•	 Coatings (Amorphous carbon, 
Superhard nanocomposites, 
Commercial Coatings – CrN, E-
NiB …) 

•	 Lubricants (Additives – formation 
of low-friction boundary films) 

•	 Textured surfaces 



Near Frictionless Carbon Films 

Plasma-assisted CVD 

� Non-crystalline 0.6 
structure 

–	 a-C:H 0.5 
� Near RT process Test Conditions: 

Load: 10 N 
Speed: 0.5 m/s 
Distance: 1305 km 
Environment: Dry N2 
Temperature: 22oC 
Wear rate: 7.4X10-11mm 3/N.m 
Coated M50 Steel Ball (9.5 mm diameter) 
Coated H13 Steel Disk 

17,500,000 passes 

Test machine 
failed 

SEM
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–	 Ceramics, 
metals, polymers 

� Ultra-low friction 
–	 < 0.001 

� Reduced Wear 
–	 105 lower 
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Pin-on-Disc Evaluation of Low-Friction Superhard 
Coatings – 50 % Reduction in Boundary Layer Friction 
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Block-on-Ring Evaluation of Scuff Resistant Coatings
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� Low-friction technologies 
must also maintain or 
improve the durability and 
reliability of critical engine 
components – a challenge 
for low-viscosity 
lubricants. 

� Strategies are being 
developed to identify 
pathways to improve 
scuff-resistance while 
enabling use of low-
friction, low-viscosity 
lubricants 

Severe deformation 



Technology Development & Validation – Low-Friction Additives


� Development of Low-
Friction Additives 

–	 Developed test rig to 
simulate ring-on-liner 
and piston-on-liner 
tribological environments 

–	 Discovered low-friction 
nature of boric-acid (BA) 
based additives, 
Developed concept of 
boric-acid based 
additives (fuels & lubes) 

–	 Developing technology 
to produce nm-sized BA 
additives 

–	 Demonstrating low-
friction properties of BA 
in lab tests prior to 
engine validation studies 

Ring Segment 

Liner Additized 
Segment Oil 

Blue trace shows 
friction coefficient 
during cyclic 
heating tests – 
Note how cyclic 
heating activates 
the action of the 
BA additive to 
produce low 
friction 



10W30 synthetic + 10 % E Additive 
� Comparison: 

–	 No significant difference in contact resistance in time or between 
different lubricants 

–	 It can be shown that the decreases in friction at low temperature as 
cycles occur are due to greater hydrodynamic lubrication as a result 
of fine polishing of the liner 

10W30	 10W30 + E Additive 



PAO 10 + 10% E - Additive 

� Specimen and cup were cleaned well to remove any chemical additives 
and filled with PAO 10 
– Boundary friction at 100°C = 0.108 
– Minor change of friction at low temperatures as tests progress 
– Significant Impact of E Additive on friction 

PAO 10 PAO 10 + E - Additive 



0 

Low-Friction Additive Consumed During 9-Day Benchtop Test


� During extended 

break-in tests with low-

friction additive, the 

friction was initially low, 

continued to decrease, 

then increased as the 

additive was depleted
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Textured Surfaces 
� Textured surfaces with ‘oil reservoirs’ produced by laser dimpling or 

control of coating morphology during deposition 

Partial Laser Texturing of Hard (1800 HK), Electroless
Hard Cr Coated Cylindrical Ni3B Coating After ‘Plateau
Piston Ring – Etsion (COST Polishing’ – UCT Defense, 
June 2007) LLC 



Textured Surfaces as a Method to Reduce 
Hydrodynamic and Mixed Lubrication Friction 
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Microdimples created by LST 
act as oil reservoirs thereby 
minimizing boundary and 
mixed lubrication friction 

� Argonne (in collaboration with 
Technion University – Prof. I. 
Etsion) is evaluating the 
potential of laser surface 
texturing to reduce friction on 
engineered surfaces 

� Results suggest LST may 
provide significant energy 
savings regimes where 
conformal contact is presentFe 
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Ricardo/U-Mich – In-Cylinder Validation of Models and Low-
Friction Technology 

� Single Cylinder, Fired Diesel Test 

�

Engine – Ricardo Hydra 
Engine Modified to Monitor 
Friction Force Between the Piston 
(Skirt & Rings) and Liner 
Continuously 
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In-Situ Measurement of Ring/Piston – Liner Friction


� U-Michigan instrumented liner installed in 
single-cylinder Hydra engine 

� Preliminary friction force trace as a 
function of crank angle under motored 
conditions 

� 4-valve DI cylinder head to be installed for 
in-situ friction force measurements under 
fired conditions 



Summary & Future Directions 

� Significant Fuel Savings can be Achieved by Reducing Parasitic Friction 
Losses in Engines and Drivelines 
–	 3-5% - Engine 
–	 2-4% - Driveline 

� Suite of Mechanistic Models Integrated to Examine the Role of Low-

Friction Technologies and Low-Viscosity Lubricants on Fuel Savings


� Benchtop/Lab Techniques Identify Potential Pathways to Low-Friction 
Technologies 

–	 Depending on operating conditions, boundary friction reductions up to 90 % can be 
achieved 

� Engine Validation Studies in-progress 

� Future Directions 
–	 Single-cylinder studies 
–	 Low-friction technology development & evaluations 
–	 Multi-cylinder validation 
–	 Accessories – modeling of parasitic friction losses 
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Boundary Lubrication Mechanisms – Scientific 

Understanding of Friction, Wear, & Lubrication


� Developing and using advanced x-
Using the APS to analyze boundary lubrication 

ray techniques to investigate 

friction and wear mechanisms 
–	 Formation of protective 


tribofilms


–	 Surface failure mechanisms 
(Scuffing) 

Squeeze films in oil: 
Analyze with XRD 

Surface 
tribofilms: 

Analyze with 
XRF, XRR, 

XRD 

Near-surface 
deformation: 

Analyze with XRD 
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Progression to Scuffing
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severely deformed 
surface layer (~ 20 µm) in 
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10W30 synthetic + 10 % E BA 

� Comparison: 
–	 No significant difference in contact resistance in time or between different 

lubricants 
–	 It can be shown that the decreases in friction at low temperature as cycles 

occur are  due to greater hydrodynamic lubrication as a result of liner wear 
during running 

10W30	 10W30 + E BA 



Transient Speed Tests - PAO 10 + 10% E - Additive 

� Data were obtained at 100 C at end of test for various reciprocating 
speeds: 



Benchtop Studies – What Is the Magnitude of Friction Savings That Can 
be Achieved, and What Level of Increased Protection 

� Models assumed 30, 60, and 

90% reductions in boundary 

friction – what are realistic 

friction coefficients, how do 

they compare to the baseline 

assumptions – are there 

technologies that can provide 

these levels of improvements


� Pin-on-Disc, Reciprocating, 

Block-on-Ring, and Ring-on-

Liner Configurations


–	 Friction, Wear, Scuffing-

Resistance of test coupons 

and prototypic rings and 

liner segments


� Coatings, Surface Texturing, 

and Additives




Technology Development to Technology Implementation

& Commercialization

� Argonne’s Tribology Section heavily focused on MultiCylinder 

technology development, evaluation, and testing. Engine/Transmission 
� Develop close alliances with industry to validate Validation 

prototype components and commercialize Fired Single
technology Cylinder

Engine
Component Validation 
Rig Tests 

Ring & Liner 

Benchtop

Tests


Technology

Development


Coatings

Lubricants


Nanofluids, etc.




Ramped Speed Tests - PAO 10 + 10% E - Additive 

� Sliding is strongly hydrodynamic, even at slowest sliding speeds 
–	 Thus, actual boundary friction coefficient cannot be determined from 

these graphs 



Friction Analysis - PAO 10 + 10% E - Additve 

� Graphs of friction at 100°C as a function of position near start of test and 
near end of test are strikingly different from each other 

� Near end of test, sliding is largely hydrodynamic, even at 100°C 
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