

... for a brighter future

*Oyelayo Ajayi, Robert Erck, Ali Erdemir, George Fenske, and Irwin Goldblatt**

*BP-Global Lubricant Technology, Wayne, NJ

14th DEER Conference, Dearborn, MI August 4-7, 2008

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Background

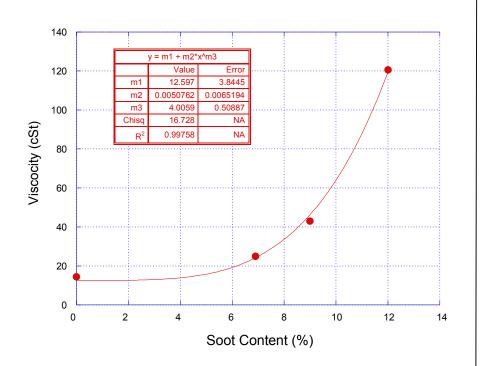
Exhaust gas recirculation (EGR) is an effective means to reduce NOx emission from diesel engine

EGR will contaminate engine oil

- Increase of oil soot loading
- Increase in oil total acid number (TAN)
- EGR will result in durability problem for many lubricated engine components due to accelerated wear
- Goal: Mitigate detrimental impact of EGR on engine components through materials, surface and lubricant technologies.

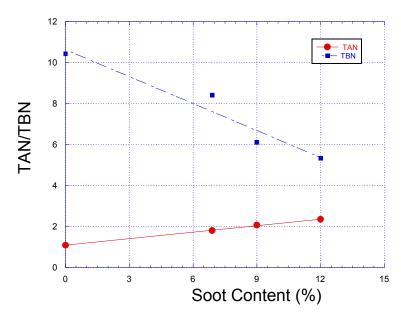
<u>Approach</u>

- Characterize and quantify effect of EGR on lubricant degradation
 - Physical, chemical, etc.
- Evaluate impact of lubricant degradation on friction and wear behavior
- Develop and evaluate material and surface technologies for improved friction and wear performance in EGR environment
- Develop and evaluate advanced lubricant formulation for EGR
 - Impact of regulation


Oil Degradation – physical

Used oils from Cummins M-11 engine tests were characterized

	A (New oil)	В	С	D
Viscosity at 100 °C (cSt) (start of engine test)	14.40	14.39	14.55	14.86
Viscosity at 100 °C (cSt) (end of engine test)	-	24.95	42.91	120.52
Total Acid Number (TAN)	1.1	3.81	2.08	2.36
Total Base Number (TBN)	10.43	8.42	6.11	5.33
Soot Content (%)	0	6.9	9.0	12.0


Oil Degradation

Oil viscosity increases as 4th power of soot content.

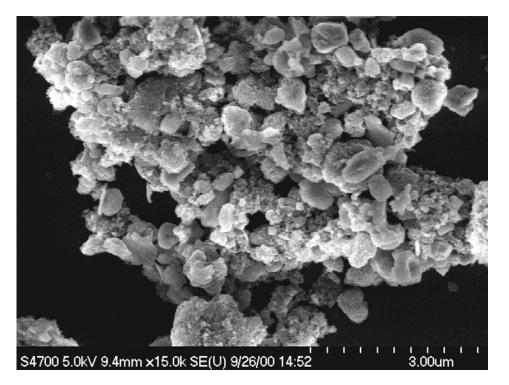
> Oxidation may also contribute to oil thickening.

> Soot content of 4.5% limit in engine tests.

TAN and TBN variation as expected.

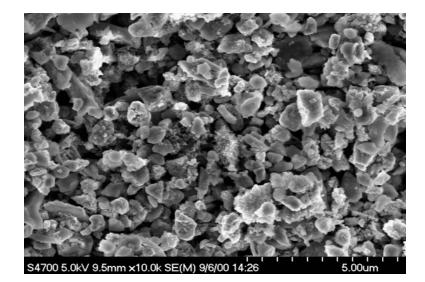
 Non of used oils reached cross over point.

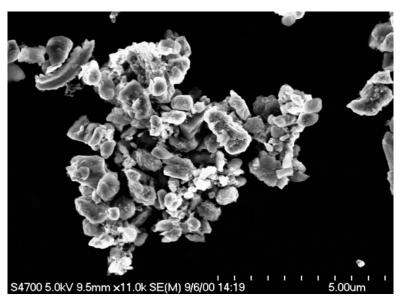
Oil Degradation – Additives


Used oils from Cummins M-11 engine tests chemical composition (ppm) characterized by standard spectrochemical analysis

Element	A (New oil)	В	С	D
Iron (Fe)	1	119	147	58
Chromium (Cr)	< 1	18	25	10
Molybdenum (Mo)	< 5	6	< 5	< 5
Phosphorus (P)	1247	750	756	304
Zinc (Zn)	1356	1111	945	843
Calcium (Ca)	3992	1096	3058	999
Magnesium (Mg)	14	10	10	4

- Increase iron content from wear
- Decrease in additive content additive depletion


Soot (Solid) Particles



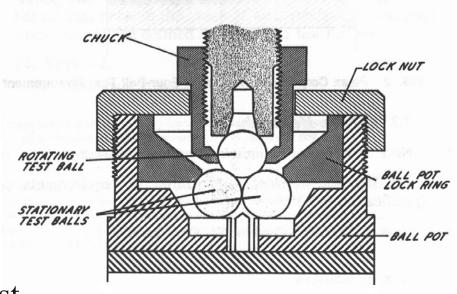
□ Insoluble solid particles in used oil consist of many components.

- Carbon, iron oxide, metallic wear debris

□Variety of sizes and shapes

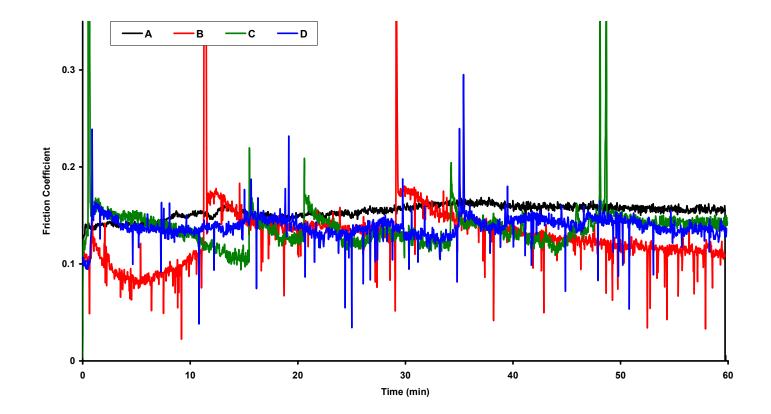
Preliminary Friction and Wear Test

Test configuration: Four-ball (ASTM D 4172)


Balls: ¹/₂" diameter M50 steel

Load: 73 N

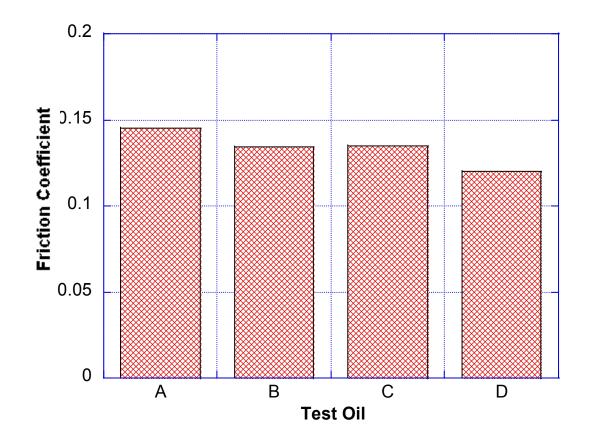
Speed: 1200 rpm


Lubricant: New and used oil from Cummins M-11 engine test

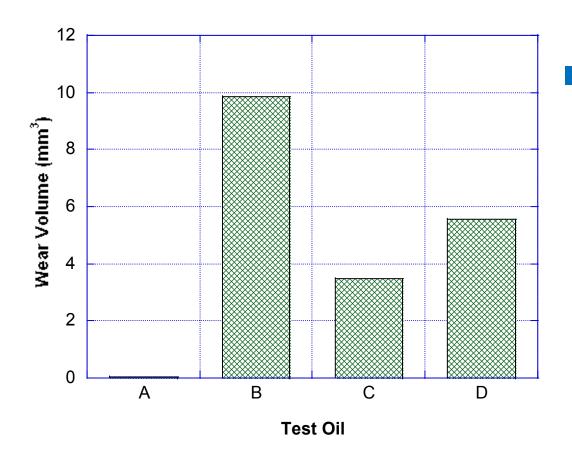
Duration: 1 hour

Friction Results

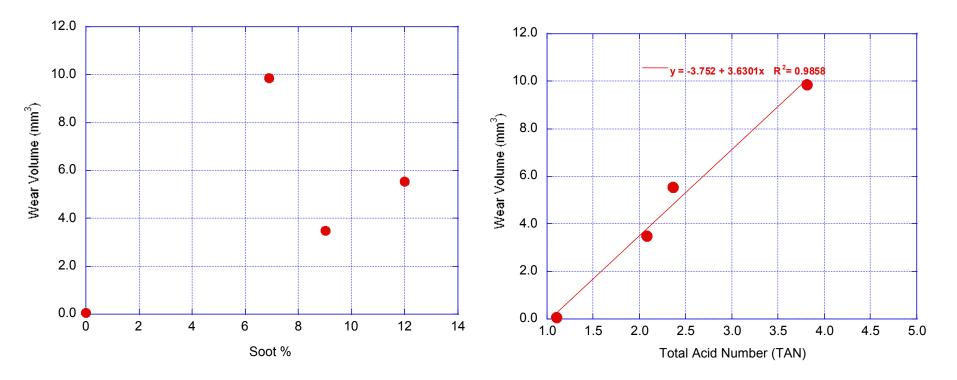
Friction coefficient nearly constant for duration of test for all oils


Periodic spike in friction for all the used oils

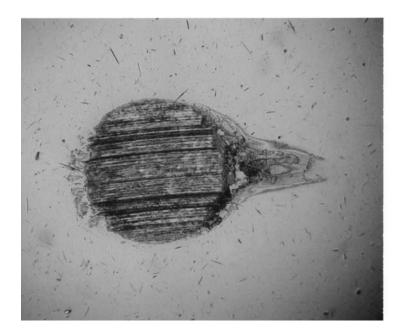
Friction Results

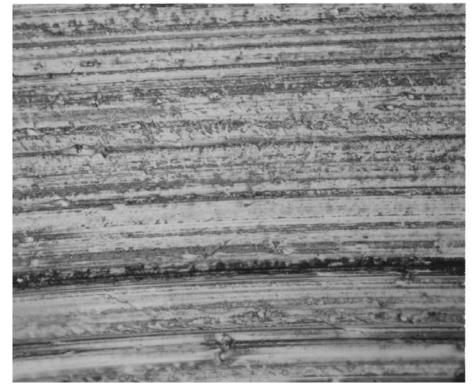

Average friction for used oil slightly lower than for clean oil

- Effect of viscosity increase on fluid film
- Carbon soot acting as solid lubricant


Wear Results

- Substantial increase in wear in tests with used oils
 - Oil degradation leads to less protection of rubbing surfaces
 - Change in chemistry
 - Presence of solid particles

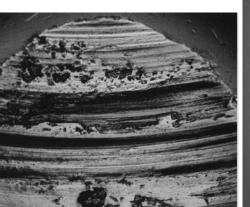




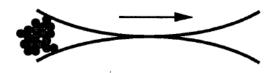
For the limited data points in the present study
Wear volume not dependent on soot content
Wear appears linearly dependent on TAN

Wear Mechanism – clean oil

Evidence of abrasive and oxidative wear


Formation of surface films – reaction with lubricant additive

Wear Mechanisms – used oil


Oils B & C

Oil D

- For used oils B and C, wear similar primarily abrasive, with less surface films
- For used oil D, in addition to abrasion, evidence of corrosion and scuffing
 - Higher TAN (corrosion) and soot content (scuffing).
 - Soot interferes with lubricant entrainment into the contact

Conclusions

- Exposure of oil to EGR during diesel engine testing resulted in accelerated degradation of oil
 - Increase in soot content resulting in significant increase in oil viscosity
 - Increase TAN and more rapid decrease in TBN
 - Oil additive depletion
- Although the used oil reduced the average friction during a four-ball bench-top test, wear was increased by about two orders of magnitude compared to new oil.
- In the tests with used oils, predominant wear mode is abrasion, aided by corrosion.
 - Scuffing was also observed in test with 12% soot content.
- No clear trend correlation can be established between bench-top friction and wear testing and wear during engine test.

Thank you !

This work was supported by the Office of Vehicle Technologies of the U.S. Department of Energy under contract DE-AC02-06CH11357

