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Summary

« Criteria pollutant regulatory efforts are focused on Euro VI HD PN limits, and California
LEV3 for LD.

« CO, mandates are spreading. Major paradigm shift underway. HDD black soot reductions
can meet ~20% of 2050 CO, reductions.

* HD engine technologies are enabling US2010 to be attained w/o deNOx treatment.

« LD technologies focused on downsizing for ~90-100 g/km CO,. NOx up ~20%. DHEV
attractive for very significant reductions.

« Fundamental SCR understanding is advancing. Combination DPF+SCR systems insights
expanding.

« LNT desulfation understanding shows sulfate differences. Combination LNT+SCR and
LNC+SCR systems described.

« DPF catalysts show direct oxidation of soot at 250C. New learnings on deNOx catalyst
loadings on DPF pressure drop are counter-intuitive. Interesting ash studies emerging
showing membrane phenomenon.

« Pt migration from DOC (or DPF) to SCR is reduced. DOCs are emerging for LTC
applications.
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HD regulatory and engine technology framework
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Euro VI regulation is nearly complete. Focus is on
PN regulation.

PN emissions on WHTC.
5 DPF engines, 7 DPF engines, 6 DPF+SCR, 4 partial DPF, 3 SCR
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Europe will be reviewing the NRMM 2014 regulation
next year

* Required as part of the original regulation
— Review technology options and the regulation by 2011
* Regulation can tighten or loosen

- We may see a PN regulation to harmonize with the LD and
HD on-road regs
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CARSB is considering LEV3.

Fleet average SULEV on the table for 2017+

FTP NMOG Emissions, g/mi Enhance flexibility:
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Implications:

* Onset of another round of toxic emissions reductions. HD
could follow

Corning Incorporated ‘ 6

CORNING |




EPA is implementing new emissions inventory model
— MOVES. Resuilts in higher emissions than previous model.

MOBILE®6 was “driving cycle” based
- Emissions by speed characterized by set cycles
- Lacked flexibility to analyze different driving patterns

MOVES is “modal” based 80,000 { 7777

- Emissions averaged by operating mode “bin” H

- Operating mode bins defined by Vehicle Specific Power
(VSP) and instantaneous vehicle speed

- Allows estimation of emissions from any driving pattern

e Driving patterns can be defined as the distribution of time spent 20,000 -
in each operating mode bin (“operating mode distribution”)

Cook County (Chicago) - NOx
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Cook County - PM2.5 What It Means

¢ Higher NOx and PM emissions mean mobile sources have
bigger role in attainment
e Percent reduction from base year is key to attainment
analysis
- PM2.5 shows higher overall emissions and higher % reductions
« Effect on attainment demonstrations could be posiive
- NOx shows higher overall emissions but lower % reduction
¢ Harder to show attainment
s Future NOx control measures will have a bigger impact
States may need to redo some motor vehicle emissions
budgets to meet conformity requirements with MOVES
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UN IPCC: To stabilize atmospheric CO, at 450 ppm,
we need 80% reductions in CO2 (vs. 1990) by 2050

CO2 i the Atmosphere
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Emerging CO, regulations are aggressive and will result in a
paradigm shift.

Fuel consumption technologies will no longer be based on the value proposition to
the customer. They will be chosen based on mandate economics.

Actual and Projected GHG Emissions for New Passenger Vehicles by Country/Region, 2002-207

Dotted line: Proposed or contestec
Solid lines: Enactec

GRAMS CO2 PER KILOMETER (NEDC TEST CYCLE)

90 [ T T T T T T T T T 1
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Source: Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update, ICCT. January 2009 update.
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Black Carbon Opportunity

Driving U.S. and EU Standards is a Meaningful International Solution

On-Road Black Carbon Emissions: * Substantial black carbon
The Case for Tighter Regulations reduction being driven by 2007/10
HDD rule and
Million Metric Tons .Euro V.I’ but rest of world
is lagging
1.4
B OECD North Am * “Wedge analysis”
12 "] OECD Europe (Socolow, Pacala) quantifies
1 I OECD Pacific needed global wedge at 25 billion
B Former Soviet Union  tonnes COyeq each by 2050
0.8 I East Europe (8 Socolo wedges required)

. China

. Other Asia
] India

B Middle East
D Latin America
B Africa

 Accelerating adoption of Euro
standards for light
duty and heavy duty could
generate 38 billion tonnes

| | ||-||_|—| | | | | of additional COyq reduction
0 -‘-’- _'—':: | e worldwide by 2050, a total of 1.5

2000 2010 2020 2030 2040 2050 wedges or 22% of all required
2005 2015 2025 2035 2045 stabilizing reductions

0.6

0.4

0.2

Note: Assumes adoption by 2015 of Euro 6 and VI in China, India, and Brazil;
Euro 4 and IV in Africa and the Middle East; and Euro 3 in Latin America

Source: Michael Walsh, Board Chairman, International Council of Clean Transportation
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BSFC and emissions are shown for emerging HD

engine technology.
2010 NOx levels attained EO, but deNOx delivers value.
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Pressure [bar]

Mahle, Vienna Motorsymposium, 5/09

A new fast intake throttle valve (combustion cycle time
resolution) results in more EGR with improved BSFC.
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A continuous rotating throttle flap (SLV) decreases charge air pressure to  traditional EGR systems while keeping low
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US LDD offerings are at 18 to 30 mg/km NOx and 7

to 13 mg/km NMHC.
Additional -70% NOx and -50% NMHC needed for LEVS3.
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Mercedes ML Mercedes GL BMW 335d BMW X5 VW Jetta VW Jetta

320 Blutec 320 Blutec (Bin 5) (Calif. ULEV) Mercedes ML Mercedes GL BMW 335d BMW X5 VW Jetta VW Jetta

320 Blutec 320 Blutec (Bin5)  (Calif. ULEV)

US06 compliance will be more significant challenge.
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Future technologies will drop gasoline engine CO,, by

39%, diesel by 40%.
Gasoline HEV: 112 g/km; DHEV 86 g/km; Larger LDD to 115 to 145 g/km

Gasoline technologies for CO2 reductions Diesel technologies for CO2 reductions
CO, ghkm 182 142 130 112 CO, g/km144 112 105 a7 86
7 @ port fuel injection 2.01 7 Reduction to Gasoline “Basic system® GO @ common rail system, turbo  2.01
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6.0 -289%  -39% @:@ + direct injection, 141 @:@- + optimized combustion 1.6
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Downsizing and downspeeding will increase engine
out NOx about 10-20%. HC goes down.
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Mild HEV technologies offer new flexibilities on
managing ICEs.
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High-Efficiency Dilute Gasoline Engines (HEDGE) are
advancing. Turbo, cEGR, MPI, A=1, strong ignition
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Significant CO, reductions can be attained, but at
generally proportional cost. DHEV delivers lowest CO,

kil
Sroup averages depicted by *
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All data are approximately normalized to a Bin 5
mid-size passenger car
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*FEV, AVL Motor Vehicle and
Environment Conference, Sept 2006.
*Ricardo, DEER Conference, August
2007.

*VW, DEER Conference, August 2007.
*Ricardo, CTl Emissions Conference,
January 2008.

*Bosch, Vienna Motor Symposium, May
2008.

*SwWRI, Near-Zero Emission Vehicle
Conference, June 2009.

*Bosch, Near-Zero Emission Vehicle
Conference, June 2009
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50% deNOx can return 6% FC reduction for
advanced engines.
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CORNING ‘ BOSCh’ NZEV Conf 6_09 Corning Incorporated ‘ 21




More insights provided for ammonia behavior on Cu-

zeolites.

NHQ oxidation compromises some HT perf,; NHii storage critical
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1800 " L o0 wyr---4+---d-Ad - - e L - - -
== Theshold Storage Capacity (TSC)

1600 ¥ e H3 O idation a0 Bofr---1t--- i R
= 1400 - 70 oF ?‘1?'3'- ------ e kel ity
— =
Ewm- - 60 5 g ot---7-4-f--——--@--—-—--F-———7-——7--------
B 1000 50 8 - R i o i B ] e S e

=] = =
[=]
E"E, 800 1 "“E;,, O Wr---1P7r-7-—5 it il el et (it By
: I GH | 1 1 1 1
= 6004 r 0= S 01--- B ——5S NOx Conversion
400 1 20 2071 - ——-------1 -TSC NOx Conversion
| | _— -
200 A - A0 i0 4 - 2——---1--1 -B-Initial NOx Conversion
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NH; oxidation by Cu-zeolites begins at ~250C.
TSC is thought to be tightly bound NH; (>97%
capture eff. at 350 ppm NHj; inlet); >90% oxid

to N, at T<500C;

T<400C: NOx conversion strongly depends
on stored ammonia.
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Detailed study optimizes Fe- to Cu-zeolite sizes and
architecture. cu-zeolite aging, NH; oxidation, and light-off balanced.

Temperature Range for Conversion > 80% 100 ,_:7Q\Qg\‘\‘

| ]
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y 60200% Fe | @ \:
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Temperature (C)

T Range > 80% NO, Conv (C)

Fe-zeolite followed by Cu performed best. Rear Cu Optimization exp show 2:1 Fe-Cu ratio best at
protected from aging exotherm; Front Fe gets NH, at HT. 3X the size of base system.

—{25% Cu SCR in front}

1 Ford, SAE 2009-01-0901 ULy no Cu
< 901 "“No Cu SCRin front] < 95 /1 front
5 7l § %01 /
0 Zg ] [50% Cu SCR in front] Light-off B g
ué . imoroved E 80 25% Cu
8 40| : _p ove O 75 in front
3 30 ‘ [75% Cu SCR in front| with small Slice of Cu in front  [SEEAR |
< 204 |  NH./NO = 2.2 CU'ZGOIite oxidizes NH3, 65 - NH,/NO =1

13 1 e placed up compromising HT 60 : . . .
0 100 200 300 400 500 e00 [ERigela]® perf. 150 250 380 450 S50 650
Time (sec) Bed Temperature (C)
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More information emerging on SCR+DPF units.

AP issues need resolving, deNOx is excellent; little impact on active DPF
regen (CO emissions up)

USOG resu|tS o e e —___ Clean
Total NOx | TotalHC | Total CO 00 - Ty
conversion | conversion | conversion d 2-3 gliter
80 soot
SCR coated a7% 88.2% 99.1% -
CH50 =
=
SCR coated |  81.5% 88.9% 98 4% ] - Cordierite+SCR
MSC-14 8 =0
sgd:tu(zggu 81.0% 89.7% 98.9% E -
WCL % X
LAO4 had 90.7, 88.0, and 82% deNOx "
(Cordierite, SiC, Cordierite -25%); =
a8 [i}
iC+SC 150 200 250 1 300 :I-SD': 400 450 500
7 — 300/12 e
= 6 / . .
g . o e T AII.DPFs 2X SVR; hydro-aged 64 hrs. at 800C; Cu-
@ / 3:00 12 zeolites
% S ‘E“E:"':"“R" I"‘?f"'fj * All units loaded with NH3 prior to test (max.
o LLFY L} [} - PR
8, ,,/":,,/“" e efficiency boundary condition)
: 2 ,ﬁﬁ;{:ff/’ﬁ 200/12 * Regeneration times nearly the same as baseline for
s all DPFs
1 . : : :
» CO emissions during regen increased vs. baseline:
0 ; ; 2 : z . 59-68% conversion vs. 100% for base

Soot loading (g/L)
JM SAE 2009-01-0910



Results on DPF+SCR show unexplained SV
sensitivity and PM interaction.

100%

{—h.--..\- =0k SV
== 40K ' SV

B0%: /{ /-

0%

B0% /

50% J 7

&% [

309 /

209 f

10%: f

D?ﬂ T T T T

150 250 350 450 550
SCR Bed Temperature {° C)

Engine dyno results show a SV threshold at 30-
40,000/hr. Unexplained and not evident in bench reactor.

NOx Conversion (%

Authors desire lower AP with no deNOx compromise
and suggest pore control to minimize resistance and
maximize catalyst-gas contact.
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PM can interfere with SCR reaction.
Hypothesis: HC coking phenomenon due to
poor oxidation. Reproducible results.

Ford, SAE 2009-01-0897
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Up-date on NH; storage and

release system.

Cooling water heating. NH3 injection at 100C.

| Ultra-pure ammonia gas delivered to exhaust
Start-up 5 line

Main
AdAmmine

Engine coolan
circulation
{2 liter/min.

bypass)

SCR Catalyst
Ammonia Flow Manifold (4FM)
w. control electronics,

- . :
\";1 Direct ammonia
flow censor, P-sensor, valve

gas dosing

Amminex, VDI Conf 6-09

Main cartridge is disconnected
and replaced at oil-service

- Mo injector nesded;

-Steel-tube “penetrating” the pipe
- Simple exhaust geometry & short
- Low pressure drop

desing amount

Recent advances focused on using cooling water

to release ammonia, and improvements in design.
Starter unit is permanent, main unit is replenished
at lube oil change intervals. Maximum power draw
is ~250 watts during heat-up.

°Ch

T_wSCR

US FTP testing shows -

Little or no ammaonia slip

Immediately high
conwersion in 2™
part of FTP

l

NHy injection at 100G § = fo ™ ™
CORNING SCR temperatu re. ° 250 500 750 1000 1260 1500 1750 2000 2%60 2600

time ()

MO efficiency %)
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LNT desulfation study identifies LT and HT sulfate.
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Desulfation improves with increasing temperature, but NOx E -
capacity decreases for T>675C due to thermal deterioration. .
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LT and HT sulfate is identified. HT sulfate is
likely in the center of the grains.

1" hn 27 3L 45 0" 1+ 23 3 45
Distares rom the inlet faos Dhstance from the init lace: Cummins SAE 2009-01-0275

Sulfur loads up the LNT front to back, but different catalysts
can give a different distribution of LT and HT sulfate.
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LNT+SCR system allows reduced PGM loadings.

Better performance at <475C for aged systems.

ngh PGM LNT Low PGM LNT
100 r . = , , r 100 — ! !
o AR L IR N
S BN T o B sl S e N L T o & s N A
g = | oo & oo A R R R\ O Rt
™ A S SR - N A — NS  M PN | WO
E s i __.i]=skwosch | R 3 50 S B
N A S i S efd b
§ " —E———J:-———i———J:- —=— 120k w/o SCR : ___I__ J:____ § 3 ——T0k wio SCH N
e Bt Eeb el bl sty el dl it Rt ol | = 120kwSCR  -5-120kwioSCR [~
w1 L L1 10 | -O
[ [ [ [ [ | [ [ [ ! ! ! ! , | , 0
o | | ] | | | ] ] | o n
103 150 200 250 300 350 404 450 S0 550 B0 108 150 2080 250 o sk 400 450 S50 550
Inlet Temperature (1C) Inlet Temperature {2C)
LNT+SCR system with lower PGM loading performs better up
to 475C than the higher PGM system at 120k miles.
Other advantages:
* Much less NH; slip
 Lower H,S emission on desulfation
CORNING ‘ Ford, SAE 2009-01-0285 Corning Incorporated ‘ 29




More details on BlueTec 1 (LNT+SCR) are provided.
NH3 selectivity of 70-80%, but it moves through LNT in a wave.

F (Temperature) F (A/F Ratio)
A= 0.88, lean/rich = 180s/5s Lean/rich = 180s/55, T = 290°C

F (Rich Time)
Lean = 180s, A, = 0.88, T=290°C

NH, formation
favored by aging,
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LNC+SCR combo shows potential for low cost deNOx

with high efficiency.

+ HC-SCR catalyst reduces NOx to both N, & NH,
* NH,;-SCR catalyst further reduces NOx using NH;

HC, Mk NH3 Mg MO H2, CO2, HaO
Cco, Cog, COg, Hz0 Oz
ENGINE: H20, 02 Oa .
H HC-SCR HH=-SCR
Diesel or Lean Gas HOx Catalyst ﬁ e ,:

NO/NO, + HC = Ny + NOx + NH3
- -

NOX + NH3 > Ny
.

~

HC-SCR Catalyst
+ Activity with heavy HCs (fuel)
+ Potential for making equal amounts
of NO 8 NH;

'
NH,-SCR Catalyst

+ Optimal with equal amounts
of MO and MH,

* Prefer NO to MO, input ta
avold MNHs-nitrates

Dual SCR vs. HC SCR N Ox Comnwversion Efficiency
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Soot oxidation mechanism is shifting from gas-soot to
catalyst-soot. First generation in series production.

Figure from Mazda, FISITA 9-08

Reported fast soot oxidation
temperatures:

475°C:; zirconia; Mazda,
FISITA 9/08

275°C; ceria mixture;
Umicore SAE, 4-08

S 250°C; MnO, mixture;
Soot is not significantly oxidized by gas. Honda, SAE, 4-09

Oxygen is transferred through the oxide lattice
to the soot-catalyst interface. No NO, is
needed. PGM levels are greatly reduced.
Good soot-catalyst contact is needed.

CORNING |
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Heavy DPF coating dynamics and PN filtration
efficiency are explained.

E 025
5 £ o =
o B 5 02 T
=] :-:‘ - ;
Jl £ 2 <
S E
0 0.2 04 0.6 o 0157F =
Pore volume of =30 um (cc/g) n':_“: z

0.1

A-33% A-10% A  A+10% A+33%
Coating amount (g/)

PM number (#/km)

PN emissions are high if pores >30 ym are
>30 um more volume than 10-20 ym pores. Capillary
forces and coating dynamics postulated.

{',:l Lower

0 01 02 03 04 <20 pm
Pore volume of 10-20 pm (cc/g)

Strongest PN — pore size correlations are for 10-20 ym and
>30 pm pores. Explained with Brownian motion theory.

Toyota, SAE 2009-01-0290
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Some ash dynamics on DPFs are shown.
Ash goes into the wall, but membrane forms keeping soot out. AP

sensitivity to soot greater with high ash loads. MIT SAE 2009-01-1086
16 — I ——Periodic Regeneration —%— Continuous Regeneration
Accelerated ash e | e . 357
loadina: = 121 | ’ w 307 .
oa |ng. g .:Q- ?; 95 4 ‘
e e . 08+ . 1 2 a2p4d e
. _Lube oil is injected into % o A E sl -y "
diesel fuel combustor e I 2 104
o -~y * £
chamber 0.0 s : : : : | o 05
0 2 4 6 8 10 12 14 0.0 . = - = - |
» Heat exchangers control Ash [/ 0 10 20 30
Ash

exhaust temperature In accelerated ash testing, about 2 g/liter _ i _

. . ash penetrates into the wall resulting in Generally, continuous regeneration lays down
¢ D|e_Se| engine exhaust rapid AP increase (Stage |) a growing membrane whereas periodic
provides soot regeneration collects ash at the DPF end.

—0— No Ash —— 12.5 g/l Ash —s— 33 g/l Ash —— 42 g/l Ash 4 4 125g0lAsh mO 33g/lAsh ® O 42g/lAsh

1 ]|

§ i N o
: - |
=} o I
p S 6+ I
s g )
g ?) 4+ .- ,: ' /
o . 2 o &

1 w <] L

7 £ 2 #-n -e |

Cummumiative PM Load [g/1] 0+ } —— } | f
o 1 2 3 4 5 6 7
Filters with 33 g/liter ash have same AP at >0.4 Cummumiative PM Load [g/1]

g/liter soot as ashless DPF. 12.5 g/liter ash is AP sensitivity to soot (slope) increases with ash load.
lower. Ash membrane keeps soot out of wall. Corning Incorporated 35



Results on membrane-coated honeycombs are reported.

e
$l J'.J'. Samplet 1300 | | |
6 r % [Body without - = T :
Infet-Membrans), =t Sample1
v l'_i = q - — —
e e § 1200 [Body without T
S Inlet-Membrane] !
E1100 i s )
B h 1 I »
R1000 |0 "% —usalBREEieN ] o
- i
. = gog [T L s
5 l = _i ok Sample2
: Inlet-Membrane) —— -~~~ ad -t I e e {Body with
I | | | | = igh Inlet-Membrane}
i 4 * . I |

TO0
b G B R 700

PM Loadng Amount ig/L)

B

[ =y ]

PH Loadhg Amount /L)

Because initial soot does not enter
wall, soot-loaded back pressure is

reduced 30%. Initial back pressure » : : -
higher. g Initial, clean DPF PN filtration efficiency up 20%

vs. the baseline condition.

Regeneration exotherm is similar

Note: Ash membrane eventually forms to give
similar results.
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Pt from upstream DOCs (or DPFs) can contaminate

downstream SCR.

Ford, SAE 2009-01-0627

== DG gt 67040
=4 DG al 7RG

=i DD gl 8 G
I I I

Comla by o T s rarbung  2C)

Fe-zeolite deNOx held for 16 hrs
downstream of DOC. Loss of efficiency
due to Pt poisoning.

* Traditional detectable limit is 5 ppm

* In addition to the ethylene method, an enhanced XRD
method was used, and a lab set-up successfully

duplicated dyno results.
*N20 emissions can also be high

Ford, SAE 2008-01-2488
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Replacing Pt with Pd decreases Pt migration from DOC
to SCR. Formulation within composition can matter.
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New DOC formulations drop T50 in presence of low
oxygen and high HC+CO. Designed for pre-mixed combustion

T50 of HC | degree C

3m o T I T
L : =#=C0=500ppm | HE=5000pmc
| =0~ C0=5000ppm / HC=5000ppmC
250 |------ ez mm o m===eee=F=======4
| | Ageing : 700 C x 104 hre
|
| I
200 f-@---d--m---- e mmm e
| I
! I
150 P i e [ e R e e T
| | |
| | |
| | |
100 | | |
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0O, concentration / %

Difficult to get commercial DOCs to light-off
in 2% O2 w/ high HC+CO levels
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40
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n i

=20
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250
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150 : -
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Enhanced catalyst formulations:
» Materials to supply oxygen
» CO adsorption suppressant

* Plurality of active sites for
multiple function

JM, SAE 2009-01-0280 e ‘ 39




Summary

« Criteria pollutant regulatory efforts are focused on Euro VI HD PN limits, and California
LEV3 for LD.

« CO, mandates are spreading. Major paradigm shift underway. HDD black soot reductions
can meet ~20% of 2050 CO, reductions.

* HD engine technologies are enabling US2010 to be attained w/o deNOx treatment.

« LD technologies focused on downsizing for ~90-100 g/km CO,. NOx up ~20%. DHEV
attractive for very significant reductions.

« Fundamental SCR understanding is advancing. Combination DPF+SCR systems insights
expanding.

« LNT desulfation understanding shows sulfate differences. Combination LNT+SCR and
LNC+SCR systems described.

« DPF catalysts show direct oxidation of soot at 250C. New learnings on deNOx catalyst
loadings on DPF pressure drop are counter-intuitive. Interesting ash studies emerging
showing membrane phenomenon.

« Pt migration from DOC (or DPF) to SCR is reduced. DOCs are emerging for LTC
applications.
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CORNING INCORPORATED PROVIDES THIS DOCUMENT FOR
INFORMATIONAL PURPOSES ONLY, AND ANY RISK CONCERNING
THIS INFORMATION IS WITH RECIPIENT. SPECIFICALLY,
CORNING INCORPORATED MAKES NO REPRESENTATIONS,
WARRANTIES, EXPRESS OR IMPLIED CONCERNING THE
INFORMATION, INCLUDING WITHOUT LIMITATION WARRANTIES
THAT THE INFORMATION IS ACCURATE.
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