Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap

J.A. Lymburner, R.W. McCabe, and J.R. Theis Ford Motor Company

> 2009 DEER Conference Dearborn, MI August 4, 2009

> > Contact: rmccabe@ford.com

Focus of Presentation

3 combustion features

Three Main Aspects:

- 1. Effects of Lean-burn, EGR, and deVCT on BSFC and BSNOx at 1200 rpm, 4 bar BMEP
- 2. NOx trap purge fuel requirements at several of the best BSFC/BSNOx points
- 3. Trade-offs between tailpipe NOx emissions and "effective" BSFC* (and implications for lean-burn engine operation in general)

*BSFC_{effective} = Cycle-weighted BSFC for lean operation (NOx storage) and rich operation (NOx trap purge)

Engine: 2005 5.4L 3V V-8* with:

- dual equal VCT (deVCT)
- non-production external EGR system (see below)

*Stein, et al., *The Combustion System of the Ford 5.4L 3-Valve Engine* Proc. 2003 Global Powertrain Congress, Vol. 24, Ann Arbor, MI Sept. 23-25, 2003

What's new?

- lean operation
- EGR system (non-production)
- aftertreatment (TWC+LNT)

But.....

- 1200 rpm, 4 bar BMEP only
- 250 combinations of lean AF, cam retard, and % EGR

BSFC vs BSNOx comparison for various combustion features (1200 rpm/4 bar)

Fuel breakdown analysis

	Stoich	Stoich w/ deVCT	Stoich w/ EGR	Stoich w/ EGR w/ deVCT	Lean (20:1)	Lean+ deVCT	17 AFR 30 CAM 16.7EGR
BSNOx (g/kW-h)	19.14	10.34	5.80	2.93	13.30	11.14	4.28
BSFC (g/kW-h)	287.3	273.0	274.2	262.1	261.1	253.2	253.9
% decrease vs. stoich (measured)		5.00	4.58 (8.79	9.12	11.89	11.64
c al cu late d % de cre ase in B SFC due to:							
> PMEP		4.54	1.89	6.37	1.69	5.88	6.28
> Dilution		0.45	2.58	2.84	6.90	5.62	5.05
> HC		0.45	-0.35	-0.29	-0.66	-0.43	-0.68
> CO		-0.93	0.35	-0.01	1.34	1.37	1.39
 Comb ustion Phasing 		0.13	0.09	0.13	0.08	0.13	0.12
► FMEP		0.36	0.02	-0.25	-0.23	-0.67	-0.52

~ 3% BSFC benefit for best lean case vs best stoich case

How lean-burn helps fuel economy

- Decreases pumping losses (i.e. PMEP), but no incremental benefit over VCT + EGR
- Improves fuel conversion efficiency via the dilution (or "gamma") effect on the burned gas expansion process
 - $\eta_f = 1 (1/r_c^{\gamma-1})$ [where $\gamma = C_p/C_v$, and the greater mass of gas results in lower burned gas T and C_v and thus greater γ ; also less heat transfer and dissociation]
 - Partial overlap with EGR and slight overlap with VCT
- Decreases CO/H₂ emissions (lost fuel)

Engine-Out Fuel Consumption & NOx Optimization

	AFR	CAM	EGR	BSNOx	BSFC	IMEP
Stoich at Base Cam	14.66	0	0	13.50	289.1	0.45
Stoich at 45 CAM	14.69	45	0	7.76	270.3	0.73
Stoich + VCT + EGR	14.70	40	17	2.36	262.0	1.07
Lean only	20.05	0	0	13.31	262.9	0.83
Lean + VCT	19.12	40	0	8.14	251.4	1.40
Lean + EGR	20.19	0	10	3.99	259.6	1.66
Lean + EGR + VCT	17.05	30	17	4.20	253.5	1.61

- Best BSFC is obtained with Lean & VCT only.
- Adding EGR greatly reduces NOx but at the expense of higher BSFC than with best Lean+VCT case.
- Best engine operating condition can only be determined based on <u>tailpipe</u> emissions and fuel consumption.

Part 2: LNT Impact on NOx Tailpipe Emissions and BSFC_{effective}

- NOx tailpipe emissions:
 - LNT needs low engine-out NOx to operate with high efficiency
- BSFC_{effective}:
 - cycle-weighted BSFC for lean storage and rich purge
- Trade-off between low BSFC and low TP NOx

Lean-rich duty cycle for LNT operation

The Modern IC Engine with Lean-Burn Aftertreatment System – a rich integration of chemical, mechanical and controls engineering

Lean NO_x Traps

Ceramic substrates (cordierite) 400 cells/sq inch

Washcoat – a thin layer coated onto substrate

Like TWC, washcoat of LNT contains

- PGM (Pt, Rh, optional Pd)
- Al_2O_3 , ceria for OSC, stabilizers
- LNT also contains high levels of NO_x storage materials

-Alkaline-earth metals (Ba, Mg)

-Alkali metals (K, Cs, Na)

Lean NOx Traps

- Convert HC, CO, & NO_x at λ =1
- at $\lambda > 1$ convert HC & CO, store NO_x
- Reduce stored NO_x to N₂ at $\lambda < 1$
- NO_x storage performance not as durable as TWC (800°C max)

Effect of NO_x Concentration & Flow Rate (SV) – Lab Data

Liigine-Ou		Jiisuiip			pumza	
	AFR	САМ	EGR	BSNOx	BSFC	RMS COV IMEP
Stoich at Base Cam	14.66	0	0	13.50	289.1	0.45
Stoich at 45 CAM	14.69	45	0	7.76	270.3	0.73
Stoich + VCT + EGR	14.70	40	17	2.36	262.0	1.07
Lean only	20.05	0	0	13.31	262.9	0.83
Lean + VCT	19.12	40	0	8.14	251.4	1.40
Lean + EGR	20.19	0	10	3.99	259.6	1.66
Lean + EGR + VCT	17.05	30	17	4.20<	253.5	1.61

Engine-Out Fuel Consumption & NOx Optimization

Tailpipe Fuel Consumption & NOx Optimization

	Lean Purge	(Matching	Effective B	SFC)			
					BSFC	TP Nox	
20 sec lean				(e	effective)	(ppm)	
Lean + VCT	19.12	40	0	8.69	262.00	523.49	4s R
Lean + EGR + VCT	17.05	30	17	3.66	262.44	46.47	3s R
30 sec lean							
Lean + VCT	19.12	40	0	9.49	257.28	709.52	3s R
Lean + EGR + VCT	17.05	30	17	3.99	257.08	68.32	2s R

Tailpipe Comparison: Best NOx & Best BSFC Cases

Comparison carried out at equivalent effective BSFC

Effect of NO_x Concentration & Flow Rate (SV) – Lab Data

Liigine-Ou		Jiisuiip			pumza	
	AFR	САМ	EGR	BSNOx	BSFC	RMS COV IMEP
Stoich at Base Cam	14.66	0	0	13.50	289.1	0.45
Stoich at 45 CAM	14.69	45	0	7.76	270.3	0.73
Stoich + VCT + EGR	14.70	40	17	2.36	262.0	1.07
Lean only	20.05	0	0	13.31	262.9	0.83
Lean + VCT	19.12	40	0	8.14	251.4	1.40
Lean + EGR	20.19	0	10	3.99	259.6	1.66
Lean + EGR + VCT	17.05	30	17	4.20<	253.5	1.61

Engine-Out Fuel Consumption & NOx Optimization

Tailpipe Fuel Consumption & NOx Optimization

	Lean Purge	(Matching	Effective B	SFC)			
					BSFC	TP Nox	
20 sec lean				(e	effective)	(ppm)	
Lean + VCT	19.12	40	0	8.69	262.00	523.49	4s R
Lean + EGR + VCT	17.05	30	17	3.66	262.44	46.47	3s R
30 sec lean							
Lean + VCT	19.12	40	0	9.49	257.28	709.52	3s R
Lean + EGR + VCT	17.05	30	17	3.99	257.08	68.32	2s R

Purge fuel breakdown analysis

Purge Fuel Breakdown

Summary

- Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT&EGR.
- The benefit of lean-burn is largely due to improved fuel combustion efficiency owing to dilution.
- Both VCT and (especially) EGR reduce BSNOX, but the extra fuel required to purge a NOx trap gives back virtually all of the BSFC benefit of lean-burn.
- Successful implementation of lean-burn at low emission standards may require:
 - Engine-out NOx reduction with VCT and EGR
 - Alternative to LNT for NOx control (urea-SCR; LNT+in-situSCR)
 - New combustion modes (DI stratified or homogeneous lean, HCCI, PCCI) for ultra-low BSNOx
 - Engine operation in a fixed or narrow speed-torque range

Acknowledgments

- Robert Wiley and Shawn Bogedain (cell technicians)
- Tom Leone, Bob Stein and Frank Wong (general advice and help with fuel breakdown analysis)

rmccabe@ford.com