ORGANIC RANKINE CYCLE TURBINE FOR EXHAUST ENERGY RECOVERY IN A HEAVY TRUCK ENGINE

Derek Cooper, Nick Baines Concepts NREC Nick Sharp Cummins Turbo Technologies Ltd.

Outline

Context

- Organic Rankine cycle uses a refrigerant working fluid that:
 - □ Is heated by engine exhaust gas
 - Expands through a turbine connected (through gearing) to the engine shaft
- A novel turbine design is required because:
 - The operating conditions (speed, flow, pressure ratio, etc) are quite different from those of conventional turbocharger turbines
 - The fluid properties of the refrigerant are different from those of air, exhaust gas, etc

Development program

- Investigate a range of turbine architectures to determine suitability, i.e.
 - Performance
 - □ Size / packaging
 - Manufacturability
- Down-select to the most promising solution
- Detail design, manufacture, and prototype test

Design specifications

 Turbine design point rotational speed is set by typical engine operating speed and consideration of mechanical coupling between turbine and engine

Turbine Rotational Speed	Gear Ratio
40k rpm	26.7:1
50k rpm	33.3:1
60k rpm	40.0:1
84k rpm	56.0:1

Turbine shaft speeds and gear ratios at B100 condition

Ideal Solution

- ✓ Maximum efficiency
- ✓ Small footprint
- ✓ Minimum shaft speed

Turbine selection

- **Specific speed** is a useful way to characterize turbines
- There are good, • experience-based, rules
- Design conditions demand specific speeds that are well below those of typical automotive turbochargers

CONCEPTS NREC

Conceptual designs

- Single stage radial turbine
- Two stage axial turbine
- Single stage axial turbine
- In each case, consider a range of speeds from 40,000-84,000 rpm

Single stage radial turbine

- Efficiency increases with speed of rotation
- Size decreases with speed of rotation
- Even at the highest speed, the ratio of passage height to rotor radius is very small

Two-stage axial turbine

- Blade height decreases and tip radius increases as turbine speed is reduced to maintain similar tip speeds
- Efficiency increases with speed of rotation
- Significant change in wheel speed across blade span: variable section blades are required for all two-stage designs
- Possible to design blades to be flank-millable with small impact on efficiency

Single stage axial turbine

- Tip radius decreases and blade height increases with speed
- Efficiency increases with speed
- Stator blades are transonic: exit Mach number = 1.5 – 1.7
- Constant section blades are acceptable (reduces manufacturing costs)

Performance summary

- Two-stage turbine has potential performance, but too complicated
- Down-select to single stage axial turbine

Supersonic nozzle options

• Bladed, con-di nozzle

 Drilled and reamed conical nozzle

Supersonic nozzle options

Bladed, con-di nozzle

- Better performance (+5 pt efficiency at maximum load conditions)
- More expensive to manufacture. EDM/ECM is required
- Throat width \cong 1 mm
 - Design and performance is very sensitive to manufacturing tolerances
 - Testing will be required to establish final design

Drilled, conical nozzle

- Circumferentially non-uniform flow entering rotor makes performance prediction difficult. Some experience required
- Cheaper to manufacture and easier to hold throat area tolerances
- Design is compromised by size envelope, and requires a different inlet duct arrangement

Rotor design

- Single stage architecture demands very high flow turning, but this can be managed with proper aero design
- Shrouded rotor is required to reduce tip leakage losses, which have a large impact on efficiency in a small turbine

Conclusions

- The ORC demands a unique turbine solution, and conventional turbocharger turbine design has little relevance
- The turbine is highly loaded, with a supersonic nozzle
- Two nozzle variants were developed to function with a common shrouded rotor
 - Full admission arc airfoil nozzle
 - Partial admission drilled nozzle
- The turbine performance is very sensitive to rotor leakage flow and proper treatment of this flow is critical
- The airfoil nozzle turbine is predicted to achieve satisfactory efficiency with proper sealing solutions

