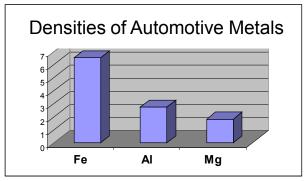
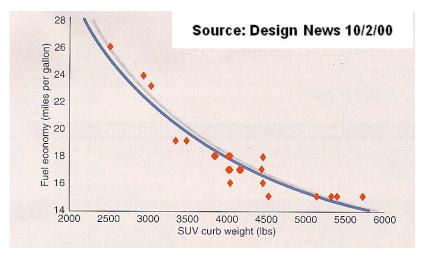
Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction

Bob R. Powell, James Quinn, William Miller (GM) John Allison, Joy Hines (Ford) Randall Beals (Chrysler)


Questions about Magnesium


□ Why magnesium?

- Lightest structural metal
- Can be cast thinner, faster, and machined easier than AI
- High specific strength and high damping capacity

How much magnesium is used in cars and trucks?

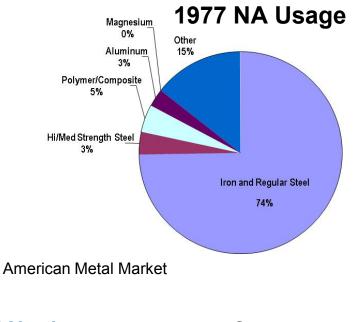
- Why not more?
- What needs to be done?

Vehicle weight reduction is an enabler for improved vehicle performance and fuel economy

Magnesium Use After World War II

- Racing wheels and truck panels
- VW Beatle
 - Engine and gear box (20 kg) 42,000 mt Mg in 1971

🛛 1970's

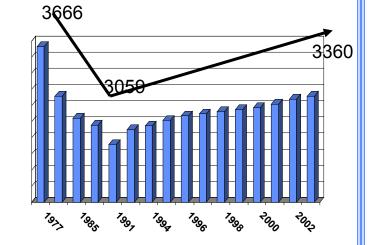

- Demand for greater power AZ81 lacked creep resistance
- AS41 and AS21 developed
- AE42 developed high cost alloy

🛛 1980's

- Water cooling replaced air cooling of engine
- Mg corrosion resistance inadequate
- Development of high purity alloys

Magnesium Use in the 1990's

Increased focus on mass reduction


Customer demand for features

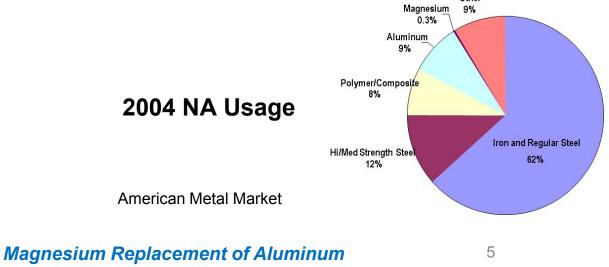
Growing global Mg production

Mg alloy cost competition

Instrument panels and cross-car beams

- GM and Audi
- Corvette road wheels
- Steering wheels
- Transfer cases

Average Passenger Vehicle Weight in Pounds



9/29/2010

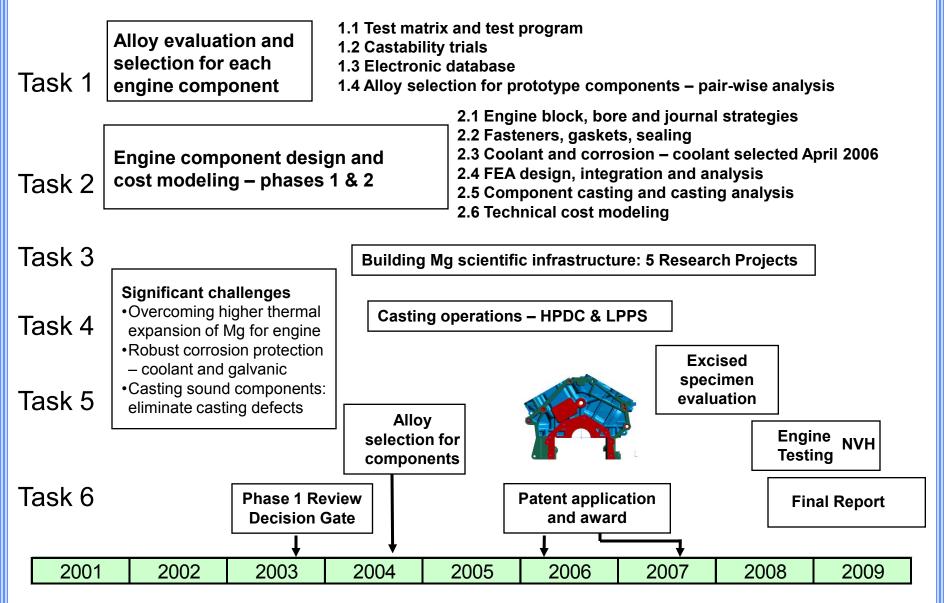
Magnesium Applications in the Powertrain

Perceived barriers to powertrain applications for magnesium

- High cost of creep-resistant alloys for > 125°C
- OEM reluctance to cast or machine Mg
- Concerns about corrosion behavior
 - Coolant, galvanic, and atmospheric
- Limited powertrain design experience
- No long-term field validation or controlled-fleet testing data
- Limited scientific understanding of Mg alloys, casting processes, and properties

Magnesium Powertrain Cast Components Project

GM, Ford, and Chrysler project supported by DOE and USCAR

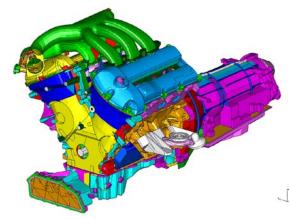

□ MPCC project team vision

• A magnesium-intensive powertrain that is cost-effective, durable, and has demonstrable performance benefits

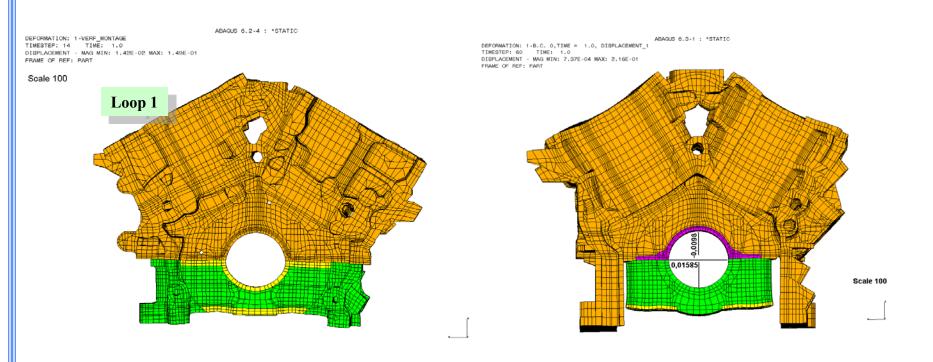
□ Overall objectives

- Phase 1 (2001 2003)
 - Scientific, technical, and economic snap shot of Mg and determine its readiness for structural powertrain components
 - 15% mass reduction of cast components of V6 engine
 - Mg replacing AI block, bedplate, oil pan, front engine cover
 - Cost effective <\$2 per lb mass reduced
- Phase II (2004 2009)
 - Demonstrate Mg readiness and cost effectiveness by designing, casting, assembling, and testing a magnesium-intensive powertrain
 - Initiate fundamental research to address showstoppers and close critical scientific/technical gaps for future Mg applications

MPCC Project Timeline

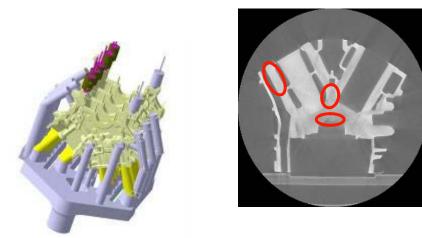

9/29/2010

MPCC Engine Design


Design decisions

- Production Ford Duratec 2.5 L V6 head and moving parts
 - Mg cylinder block, oil pan, and front engine cover
 - Use 3.0 water jacket to increase bore wall stiffness
- Replace iron liners with thermal-sprayed, wear-resistant coating
- Ethylene glycol:water coolant with magnesium protective additives
- Steel head bolts and aluminum bolts for front cover and oil pan
- New head gasket design for AI head and Mg block
- Thin wall oil pan and front engine cover strategy for NVH
- Iron inserts in bulkheads to maintain crank bore size and cylindricity

Crank Bore Distortion – Mg Block with vs. without Bedplate


US Patent 7,288,528 issued to USAMP

Analysis by Magna Powertrain

9/29/2010

Engine Block Casting

- Part cast by Fonderie Messier, Arudy, France
- □ AMT SC-1 alloy
- □ Low pressure sand cast
- □ Cast in pan-rail up position
- Chilled bores to meet porosity specification for thermal spray coating

Oil Pan, Front Cover, and Rear Seal Carrier Castings

- Cast at Intermet
- HPDC process
- MRI 230D alloy
- 2.5 mm nominal wall thickness

- Cast at Spartan LMP
- HPDC process
- MRI153M ally
- 3.0 mm nominal wall thickness
- Deeper pockets for transmission mounting flange

- Cast at Thixomat
- Thixomolding
- MRI153M alloy

Sub-Assembly Testing


Passed pulsator testing of head gasket

 Validated cylinder head life and design for sealing AI head on Mg block

Passed cyclic and static thermal aging of block

- Head and main bolt load retention
- Cylinder and crank bore distortion
 - and growth acceptable
- Head gasket sealing surfaces stable

Schematic of Dana/Victor Reinz design for MPCC gasket

Engine Testing – Scuff and Durability

Passed hot and cold scuff tests

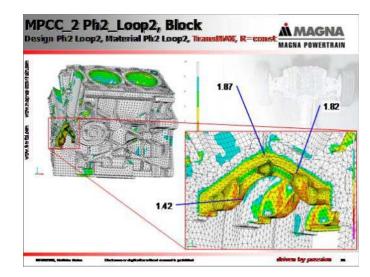
- Low lubrication conditions
- Normal piston wear
- Piston/ring packs compatible with bore
- Wear resistance of sprayed bore coating
- Adhesion of coating
- Iron liners not required

Normal piston wear

Passed 675 hr high speed durability test

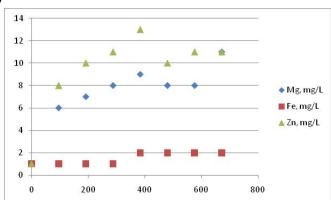
- Mg oil pan and Mg front cover on Al block
- No failure of Mg parts
- No loosening of Al bolts
- No corrosion
- No abnormal noise and vibration this result led to extensive NVH testing

Engine Testing – Deep Thermal Shock


Deep Thermal Shock Test – bulkhead failure during break-in

Completed root cause analysis

- Failure at Fe insert/Mg bulkhead interface
- Original FEA did not predict failure
- Revised New FEA does
- Offer sdesign alternatives to prevent failure in future
 - Bulkhead inserts not a show stopper



Engine Testing – Coolant Corrosion

- □ Passed 672 hr test of engine with Mg block
- **Ford BL 102-02 variant)**
 - Simulate on-road engine cycle for small Ford vehicle determine coolant corrosion
 - Engine runs 16 hours and soaks 8 hours 42 days
 - Coolant samples every 96 hours
 - Tear down inspection
 - Water passages free of corrosion product
 - Minimal corrosion product of metal surface
 - Coolant clear
 - Coolant chemistry excellent
 - Coolant corrosion not a show stopper

9/29/2010

Engine Testing – NVH

Determine effect of Mg vs. Al on NVH

- Jaguar 2.5L V6 with transmission as baseline
- Roush NV Facility in Livonia, MI
- Task leader Clyde Bulloch GM
- Standard automotive testing protocol

Testing to be Conducted										
Proposal	Overall	Component	Cold	Block	Hardw	Hardware Configuration		uration		
Line No.	Sound Power	Sound Power	Start	Vibration	Block		Front Cover		Oil Pan	Comments Mechanical changes
A.2.	Yes	None	No	No	Al		Mg		Mg	Aluminum Block with Magnesium Components
A.5.	Yes	Mg Frt Cvr	No	No	Al	Ŋ	Mg		Al	Remove Mg Oil Pan install Al oilpan
A.4.	Yes	Mg Oil Pan	No	No	Al	Ú	Al	I∧ 1⁄	Mg	Remove Mg Front Cover & Al Oilpan - install Al Front Cover & Mg Oilpan
A.1.	Yes	Al Block, Frt Cvr, Oil Pan	Yes	No	AI C		AI		Al	Remove Mg Oil pan install Al oilpan
A.3.	Yes	Magnesium Block	Yes	No	Mg	P	Mg		Mg	Install Mg Block with Mg Oil Pan and Front Cover System
A.6.	Yes	None	No	Yes	Mg		Al		Al	Remove Mg Oil Pan and Front Cover - Install Al oilpan and Front Cover

 \square

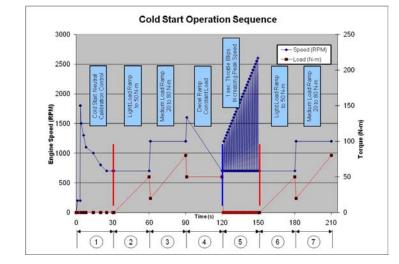
Engine Testing Results-NVH

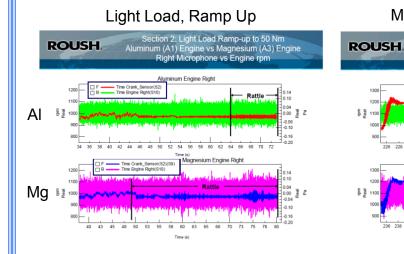
Component Sound Power – Mg vs. Al

- Mg front cover and oil pan
 - Small/acceptable increase vs. Al baseline
- All Mg engine <2 dBA

RPM	Load	FEC Al/Al	FEC Mg/Al	SOP Al/Al	SOP Mg/Al		All Mg
Idle	None	81.5	82.8	76.6	76.6	73.6	74.6
2500	(81Nm)	96.0	96.4	90.6	91.8	89.3	92.7

Overall Sound Power – Mg block


- Significant increase at high speed/load
 - 5-6 dBA in 1250-1600 Hz at 2500 RPM, 81 Nm
 - 3-5 dBA in 250-2500 Hz at 4000 RPM, 230 Nm
- Major factor (~75%) weaker bottom end
 - Deep skirt with unsupported crankcase walls
 - NVH is not a showstopper



Engine Testing Results – Cold Start NVH

Cold Start Testing

- Mg subjectively louder
- Different sound quality
- O,
- More impulsive sound pressure instances
- Piston slap
 - Occasional for Mg

Medium Load, Ramp Up

Aluminum Engine Righ

Magnesium Engine Right

228 230 232 234 236 238

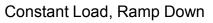
Section 7: Medium Load Ramp-up, 20 to 80 Nm

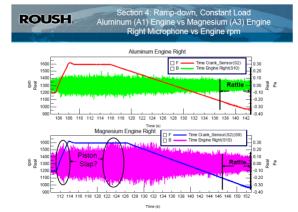
Aluminum (A1) Engine vs Magnesium (A3) Engine Right Microphone vs Engine rpm

> Time Crank_Sensor(S) Time Engine Right(S10

> > 252 254

Time Crank Sensor(S2)(S


0.05 0.00 夏 🕰


-0.25

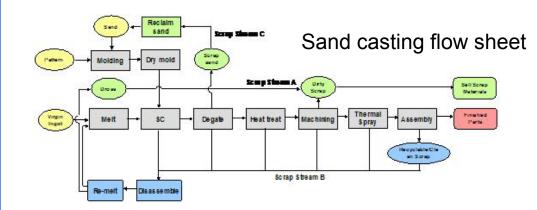
10

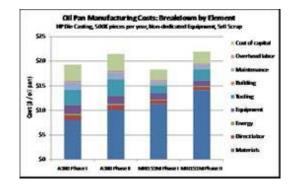
0.10

B 🖉 00.0

9/29/2010

Engine Mass Reduction Realized


Component	Production Al Duratec kg	MPCC Mg-intensive kg	Mass Reduction kg (percent)
Block assembly	32.2	24.0	8.2 (25%)
Oil Pan	4.4	3.2	1.2 (27%)
Front Cover	5.6	2.6	3.0 (53%)
Total for 3 Cast Components	42.2	29.8	12.3 (29%)
Complete Engine (with exhaust and flexplate)	176.8	163.0	13.8 (8%) 29 pounds


Donor Engine Weight (with exhaust and flexplate) = 176.8 kg (389 lbs)

Mg Engine Weight (with exhaust and flexplate) = 163.0 kg (360 lbs)

Cost of Mass Reduction

- □ Goal was cost-effective mass reduction, <\$2/Ib
- Cost models for sand casting and die casting
 - Based on compete production flow sheets
- □ Data acquired from tooling build and casting of Mg components
 - **Models predict component cost and show cost contributors**
- Cost of 29% mass reduction of Mg components was \$4/lb
 - ~ the cost of a gallon of gas when model was run
 - Mg ingot primary cost factor (increased >50% from 2003 to 2008)

MPCC Project Accomplishments

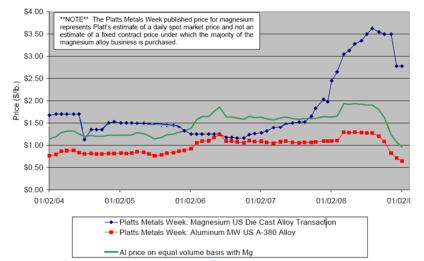
- 1. 29% mass reduction cost of \$4 / lb (\$1.79 / kg)
- 2. Tested Mg components and assembled engines
- 3. Passed four engine tests; failed bulkheads during break-in on DTS test
- 4. Root cause analysis identified design alternatives to avoid bulkhead failure
- 5. CTE mismatch between Mg and Fe is a significant, but addressable challenge: US Patent 7,288,528 issued to USAMP
- 6. Neither corrosion nor creep proved to be show stoppers
- 7. NVH performance of Mg excellent; not a show stopper
- 8. Seed-funded fundamental Mg research has become project legacy
 - Penn State Computational Thermodynamics of Mg Systems
 - NRC CANMET Hot Tearing Behavior of Mg Alloys
 - Michigan at Ann Arbor Creep and Bolt Load Retention of Mg Alloys
 - Michigan at Dearborn Corrosion Evaluation Methods and Mechanisms
 - Recycling Case Western Reserve University

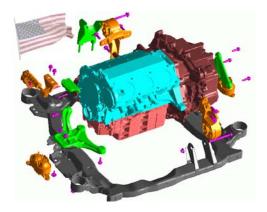
Magnesium for the future – Remaining Concerns

Alloy Cost

High cost and price volatility

Corrosion Protection


- Galvanic Couples and Coolants
- Low cost, reliable protection
 - Avoid use of coatings
- Design guide for corrosion avoidance
- Corrosion resistance in multi-component systems


□ Creep Resistant Alloys

- Design Guide for Bolt Load Retention
- Gasket Design Guide
- Fastening and Joining of Dissimilar Metals
 - Design Guide

Design Guide for Mg as noise sources and/or transmitters

MPCC Project Team

Leadership Team: Product Design: Alloy Suppliers:

Casters:

Bore Treatment: Tooling: Coolants:

Fasteners:

Gaskets:

Testing and R&D Labs:

Casting Modeling: Professional Organizations:

Project Administration:

Chrysler, Ford, GM

Ford, GM, Chrysler, Magna Powertrain

AMC, Dead Sea Magnesium, GM, Noranda, Norsk-Hydro, Solikamsk, VSMPO-Avisma

Eck, Gibbs, Intermet, Lunt, Meridian, Nemak, Spartan, Thixomat

Gehring, Flame Spray

Becker, Delaware, EXCO, HE Vannatter

Ashland/Valvoline, ChevronTexaco, Honeywell/Prestone, INTAC

RIBE

Dana/Victor Reinz

Amalgatech, CANMET, Stork, Westmoreland, Quasar EKK, Flow Science, MAGMAsoft, Technalysis

IMA, NADCA

Ried and Associates

9/29/2010

Acknowledgements

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number Nos. DE-FC05-95OR22363, DE-FC05-02OR22910, and DE-FC26-02OR22910.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Such support does not constitute an endorsement by the Department of Energy of the work or the views expressed herein.