Low Reactivity SI Engine Lubricant Program

Southwest Research Institute

Barriers to High Efficiency Operation

Adverse Effects on Efficiency from Knock

The role of lubricant in engine knock

Lubricant is much more reactive than diesel fuel and will vaporize and auto-ignite at compression temperatures

What lubricant properties are important?

Base stock >Molecular structure >Volatility Surface tension Droplet release and evaporation Additive package Effects volatility and surface tension > Molecular structure may be important Initial investigations will focus on the molecular structure of the base stock Largest component Most likely to have large effect on CN

Base Stock Selection

Silicones Polyisobutene Esters Polyalkylene glycol Phosphate ester Alkylated naphthalene

- An internal SwRI project was initiated to investigate oil reactivity and its affect on knock
- Work plan had two tasks
 Benchtop Testing
 - Engine Testing
- Project objectives
 - Study oil base stock affect on reactivity
 - >Investigate oil reactivity affects on knock

Benchtop Investigations

 Oil reactivity investigated using an Ignition Quality Tester (IQT)
 Measures derived CN / ignition delay

Test conditions

- Initial Pressure : 21.4 bar
- Initial Temperature : 550°C
- Peak Initial Temperature
 : 600°C

CN testing with solvent

To reduce the effect of oil viscosity and atomization, SwRI used a solvent

Extrapolate to 100% oil

IQT Testing for Reactivity

Lubricants Prepared for Engine Testing

Engine Testing

- Initial testing performed on SwRI VCR engine
 - Combustion chamber based on diesel
 - Slow-burn chamber
- 4 fully formulated fuels selected for testing
- Testing performed at three knock levels
 - Incipient (knock intensity < 0.2%)</p>
 - Moderate (knock intensity of 5%)
 - Heavy (knock intensity of 10%)

Lubricant Effect on KLSA and CA50

Lubricant Based Combustion Effects

Fuel Economy

- Using single-cylinder VCR engine, at 1200rpm 7.0bar nIMEP, a fuel economy improvement of ~3.0% could be realized
- Spark timing advanced from no knock to KLSA

Knock Limited CR at Fixed Combustion Phasing

Max Load at MBT Timing

- Using low-reactivity lubricant, higher engine loads at MBT combustion phasing could be achieved
- Advanced formula lubricant may increase downsizing potential

Relationship between CN, Spark Advance and ISFC

Effect of Oil Consumption

- Modern engines have low oil consumption
- Tests of oil introduced into the intake or mixed with the fuel indicate a large amount of oil is required to effect combustion
- However, distribution of oil and fuel is NOT homogeneous
 - Very high oil levels near wall
 - Outside the boundary layer, oil levels are significantly lower

Conclusions

- Initial results indicate that typical commercial lubricants have high reactivity
- SwRI identified alternate base stocks that appear to have reduced the reactivity of the lubricant
 - Lower reactivity lubricants appear to have a beneficial effect on spark knock
- Additives appear to effect the oil reactivity
 - Individual component contribution currently unknown
 - Potential exists to identify low reactivity components
- Utilization of low reactivity lubricants appears to have a potentially significant fuel consumption benefit
 - > Other properties may play a role
 - Volatility
 - Viscosity
 - Surface Tension
 - etc....

SwRI's New Internal Research Program

- The objective of this project is to investigate lubricant effects on knock in a high performance engine
 - Engine lubricant properties will be tested
 - Physical and chemical properties
 - Selected base stocks will be examined in the Ignition Quality tester (IQT)
 - Further refinements to this specialized test procedure will be conducted

Some testing will be conducted in a constant volume combustion chamber

 Test method will be developed to test engine oil film / combustion interaction

Final versions of the lubricants will be tested in a modern, boosted GDI engine application