N₂O Emissions From 2010 SCR Systems

Krishna Kamasamudram

Cary Henry, Aleksey Yezerets

Cummins Corporate Research and Technology

Background

- Nitrous oxide (N₂O) is produced in limited quantities by combustion processes and by all NOx reduction catalysts
- N₂O selectivity from TWC declined with years, due to improved catalyst formulations and operation strategies
- In three-way catalysts (TWC), N₂O forms mostly under cold-start conditions

N₂O fraction in total GHG emissions from the transportation sector

N₂O Emissions From SCR System

- In SCR system, N₂O forms in different parts of the cycle, not just the cold start
- Various catalysts can contribute to N₂O formation and mitigation

N₂O formation on

N₂O formation on

N₂O Formation on Oxidation Catalysts

 Under certain conditions, NOx can be reduced over oxidation catalysts primarily to N₂O and N₂ (lean-NOx catalysis or HC-SCR)

 $NOx = 200 \text{ ppm}, C_3H_6 = 450 \text{ ppm}, SV = 60kh^{-1}$

N₂O Formation on Oxidation Catalysts

 N₂O yield is affected by exhaust conditions, including temperature, concentration and nature of hydrocarbon species

NOx = 200 *ppm*, *SV* = 60*kh*⁻¹

N₂O Formation on Oxidation Catalysts

N₂O selectivity is also affected by catalyst formulation details

Small amounts of N₂O can be produced by all classes of SCR catalysts

- Vanadia-, Fe-zeolite and Cu-zeolite catalysts can all produce N₂O
- Even within a given class of catalysts (e.g. Cu-zeolites), N₂O selectivity depends on catalyst formulation

Dual mode N₂O formation mechanism:

- At higher T mostly due to parasitic NH₃ oxidation
- At lower T primarily through the NH₄NO₃ mechanism

N₂O Formation on SCR

- Selectivity to N₂O is strongly affected by the NO₂/NOx ratio, especially above 0.5
- Upstream DOC/DPF influence N₂O production over SCR catalyst

 $NOx = 200 \text{ ppm}, \text{ NH}_3 = 200 \text{ ppm}, \text{ SV} = 20 \text{ kh}^{-1}$

N₂O formation on

Conventional oxidation catalysts have poor selectivity in the NH₃ oxidation process

 Precious metal-based oxidation catalysts are highly active in NH₃ oxidation, but produce high yields of NOx, N₂O

Use of dedicated ASC reduces N₂O formation in the NH₃ oxidation process

 ASC can be formulated to maximize selectivity to N₂, while maintaining high NH₃ conversion

N₂O formation depends on reaction conditions and ASC formulation

N₂O mitigation on

N₂O conversion on SCR and ASC is very limited under practically relevant conditions

- Each color corresponds to a particular set of feed gas composition
- Symbols steady-state points
- Dotted curves continuous temperature-programmed experiments

- Very little N₂O reduction activity below ~400 C
 - Fe-zeolites are known to be among the most active catalysts
- N₂O does not store on the catalyst
 - Similar steady-state and transient profiles indicate this

N₂O formation and reduction/decomposition temperature windows have limited overlap

Conclusions

- N₂O is a common byproduct of fossil fuel combustion, with or without NOx aftertreatment
 - No direct health impact, hence unregulated until the recent advent of GHG regulations
- Various elements of SCR system can contribute to N₂O emissions, depending on the conditions
- Minimization of N₂O involves catalyst formulations, system architecture, operation strategy and controls
- With proper understanding of the underlying chemical processes, new EPA standards for N₂O emissions can be met by SCR systems
 - –Test data indicate that Cummins 2010 SCR systems are below the adopted N_2O threshold

Acknowledgements

Randy Jines For assistance with data collection

Neal Currier For valuable discussions

Shirish Shimpi For advice and examples of engine data

