

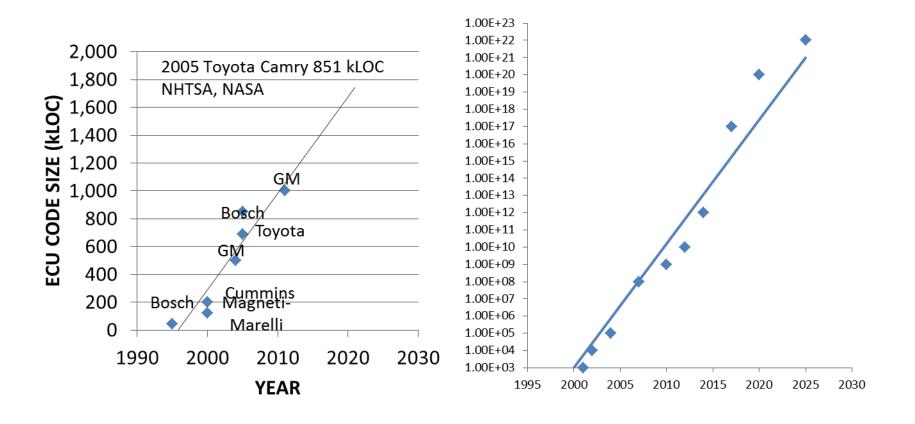
Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

> Chris Atkinson Atkinson LLC

Marc Allain & Kevin Sisken Detroit Diesel, DTNA

October 2011

- The state of the art in engine control today
- Requirements for engine control in the future
- Our approach to model-based engine control
- The implementation of model-based control and its results
- Accomplishments to date and conclusions


Control System Complexity - today and in the future

Independent Control Parameters or Orthogonal Variables	Cumulative Number of Control Variables	Date Implemented (actual or projected)
Injection Timing	1	1990s
Injection Pressure Control	2	2002
EGR	3	2002
VGT	4	2007
Aftertreatment Control - DPF	5	2007
Aftertreatment Control - SCR	6	2010
In-cylinder Combustion Feedback	7	2012
Multiple Injection Strategies	8-10	2012
Multiple Combustion Regimes (LTC)	10-12	2014
Waste Heat Recovery	12-14	2017
Hybridization/ Auxiliary Electrification/ Energy Recovery	14-16	2017
Fuel Tolerance/ Advanced Biofuel Capable	16-18	2020
Fully Independent Valve Actuation	18-20	2025
Individual Cylinder Control	20-22	2025
Cycle-by-cycle Control	22-25	2025

ERATINENT OF NERGY - ER 2011 DETROIT DIRECTIONS IN ENGINE-EFFICIENCY AND EMISSIONS RESEARCH COMPERANCE

Engine Control Software – Complexity Increase

Software Lines of Code (LOC)

Full Factorial Calibration Space (for 10 level variation in each parameter)

DETROIT

The Future of Engine Control

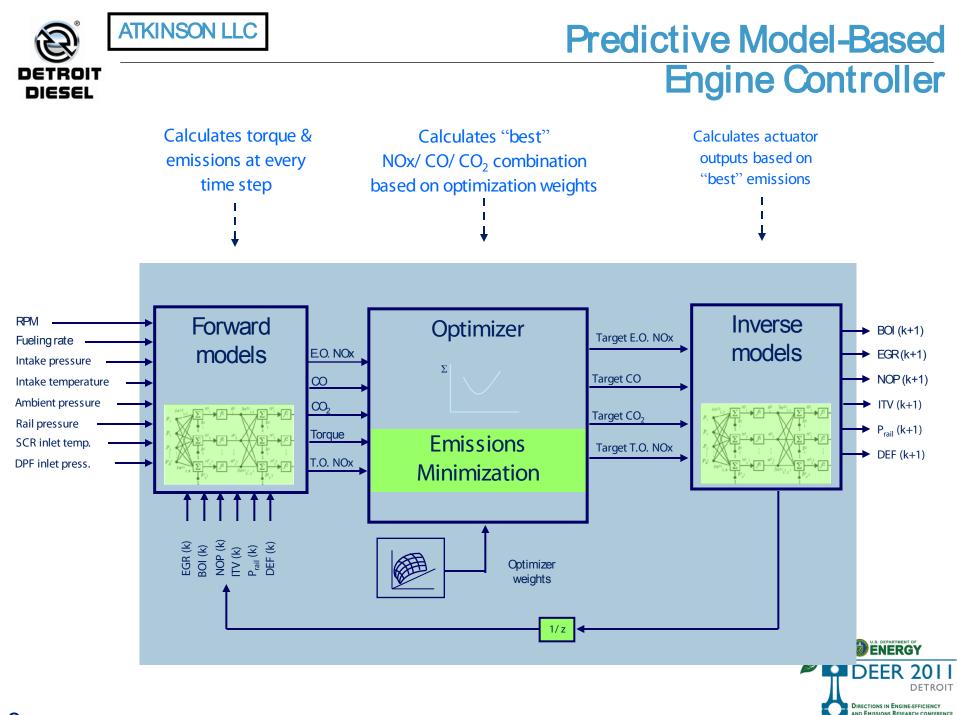
- To date, HDD engine control has been focused on and based around emissions reduction on an integrated, cycle-based basis.
- Emphasis moving from emissions reduction to real-time fuel consumption or energy usage minimization.
- We are now at about one-quarter the number of independent control parameters that we will see implemented before 2025.
 - adding roughly one independent control parameter every 1-2 years.
- Each additional independent control parameter to first order increases the calibration space by a factor of 10x.

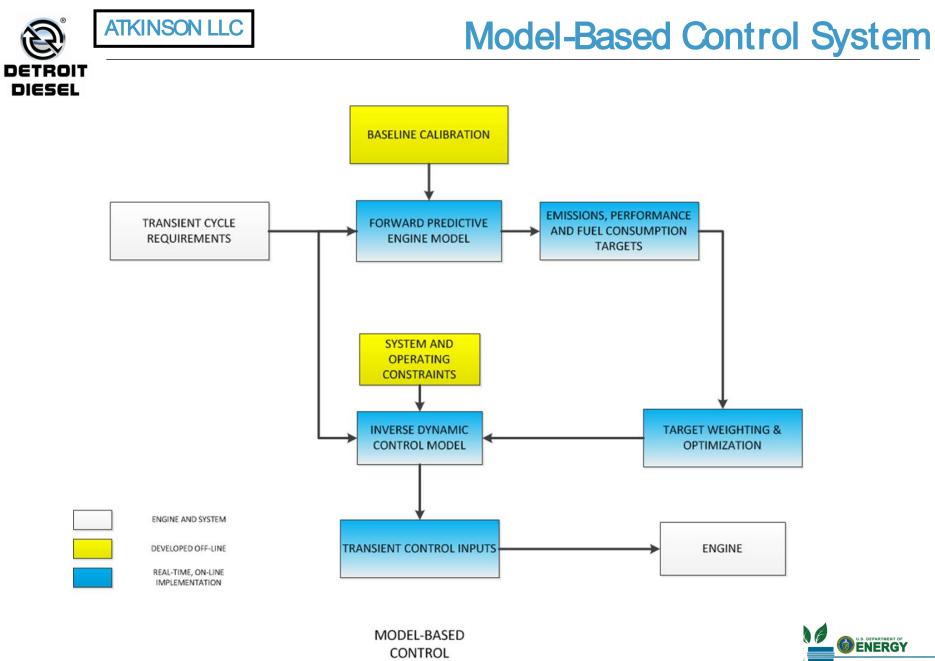
"The Curse of Dimensionality"

- Currently at about 1,000,000 lines of code in engine controllers.
- Engine control today is a calibration-intensive set of hundreds of algorithms & thousands (or tens of thousands of calibration parameters).
- The trajectory of conventional engine control is an unsustainable increase in cost and effort required to control and calibrate engines.

Transforming Engine Control

- To date engine control has been dedicated to emissions reduction and compliance.
- But it is transitioning to fuel consumption or CO₂ reduction and energy minimization with tremendous complexity to come.
- Engine control must become more integrated with overall vehicle control.
- Current control and calibration targets will transition to
 - fuel consumption or energy use minimization
 - with power/ energy blending
 - and exhaust conditions amenable to near-zero tail-pipe out emissions levels for emissions compliance.

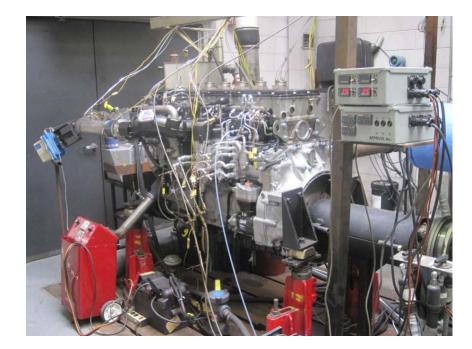



DIESEL

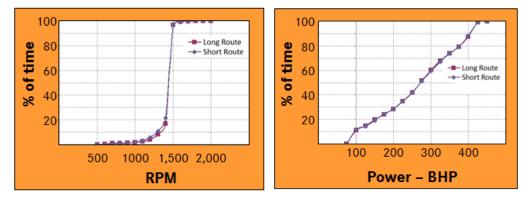
An Alternative to Conventional Engine Control

- Model-based engine control
 - Removes the requirement for the exhaustive development of algorithms and strategies.
 - Reduces the calibration requirement significantly.
 - Front-loads the engine testing effort.
 - Shifts the majority of the engineering effort to computational environment and out of the high cost engine test cell.
- Why data-driven models specifically?
 - Are able to determine the nonlinearities between engine cycle demand inputs, engine operating parameters, and outputs (emissions, fuel consumption and performance).
 - Able to make associations automatically and capable of learning.
 - Reduce data and testing requirements to a minimum.
 - Utilize immediate operating history of engine for fully dynamic, transient prediction.

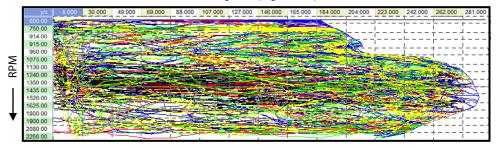
CONTROL SYSTEM



Application of the Model-Based Engine Controller


12.8 liter Detroit Diesel DD13 Engine

- 5 independent control parameters (in addition to speed and fueling)
 - Injection timing
 - Injection pressure
 - EGR
 - Wastegate actuation
 - Rail pressure
- Target values include
 - Instantaneous NOx, CO and CO₂
 - Real-time TQ
- Required ~10 hours of high fidelity dynamometer data to develop

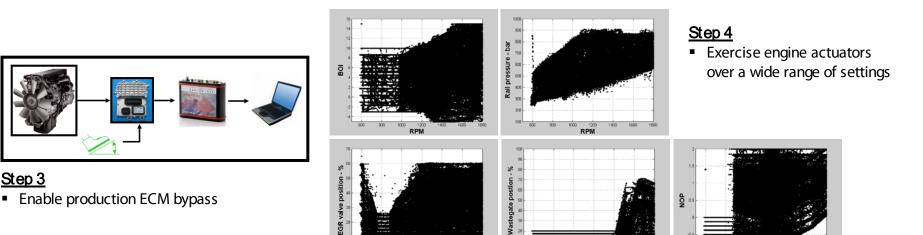


Controller Development – Data Collection

Fueling Rate (mg/ stroke) -

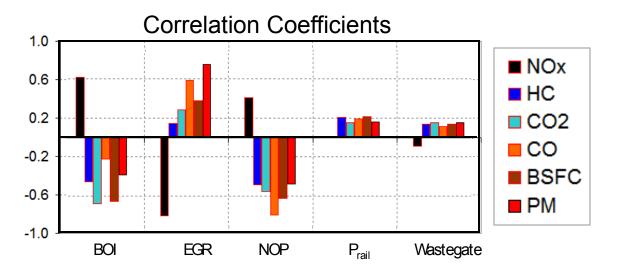
Step 3

Step 1

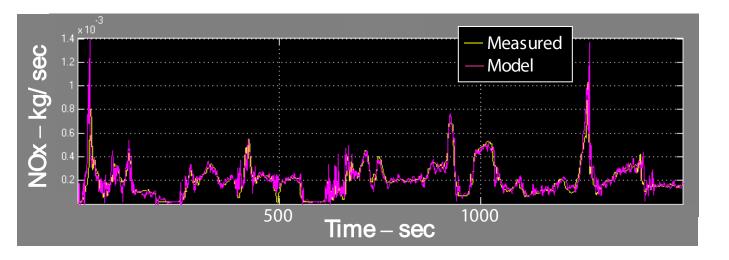

 Generate 20-40 minute dynamometer cycles representative of SuperTruck RPM/ load profiles

Step 2

RPM


 Generate additional cycles that cover a wide range of transient excursions

RPM


RPM

Controller Development – Neural Network Models

<u>Step 5</u>

- Establish correlation between individual performance parameters and engine control variables
- Define predictive model inputs

<u>Step 6</u>

- Train models
- Verify model's correlation to measured data

Model-Based Engine Controller Implementation

- Forward Predictive Models.
- Inverse Control Models.
- Real-Time Optimizer with emissions and fuel efficiency cost function to 'steer' real-time emissions and fuel consumption levels.

Parameter Description

k - current time period, k-1 - previous time period, etc.

Engine operating trajectory of speed and fueling

u(k) - actual engine control inputs at current time step

u(k-1) - actual engine control inputs at previous time period (history)

 $y(k\!+\!1)\!-\!$ actual, unmeasured, engine outputs (emissions, fuel consumption, performance) at future time step

 $Y(k\!+\!1)-$ predicted engine outputs (emissions, fuel consumption, performance) at future time step

 $U_i\!(k\!+\!1)$ – predicted control inputs, subject to variable emissions, fuel consumption and performance targets (denoted i)

 $B_{\rm i}-{\rm modeled}$ forward weights and biases (fixed)

 $D_{\rm i}-{\rm modeled}$ inverse weights and biases (fixed)

 $C_i-\text{output emissions, fuel consumption and emissions targets (variable)} \\ \text{Predicted Outputs (calculated using Forward Predictive Models)} \\$

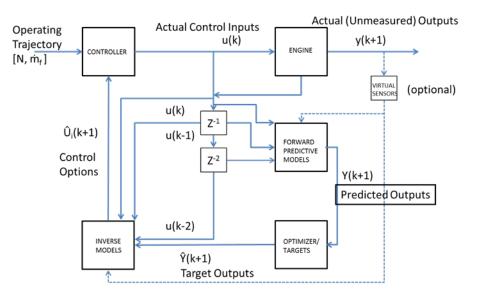
 $\mathsf{Y}(k{+}1) = \mathsf{B}_1{}^{\bullet}\mathsf{u}(k) + \mathsf{B}_2{}^{\bullet}\mathsf{u}(k{-}1) + \mathsf{B}_3{}^{\bullet}\mathsf{u}(k{-}2)$

Predicted Controller Parameters (calculated using Inverse Models for single step look ahead)

 $U_i(k+1) = C_i \bullet [D_1 \bullet Y(k+1) + D_2 \bullet Y(k) + D_3 \bullet Y(k-1)]$

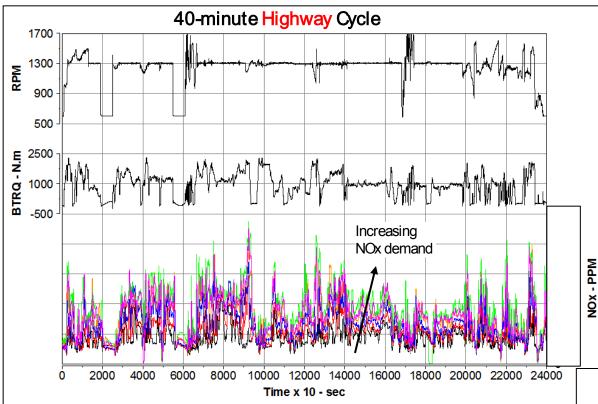
Controller Parameter Option Selection

 $\hat{U}_i(k+1) = optimum\{U_i(k+1)\}$

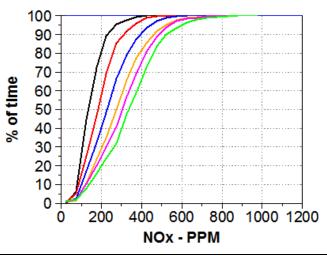

Subject to the constraints:

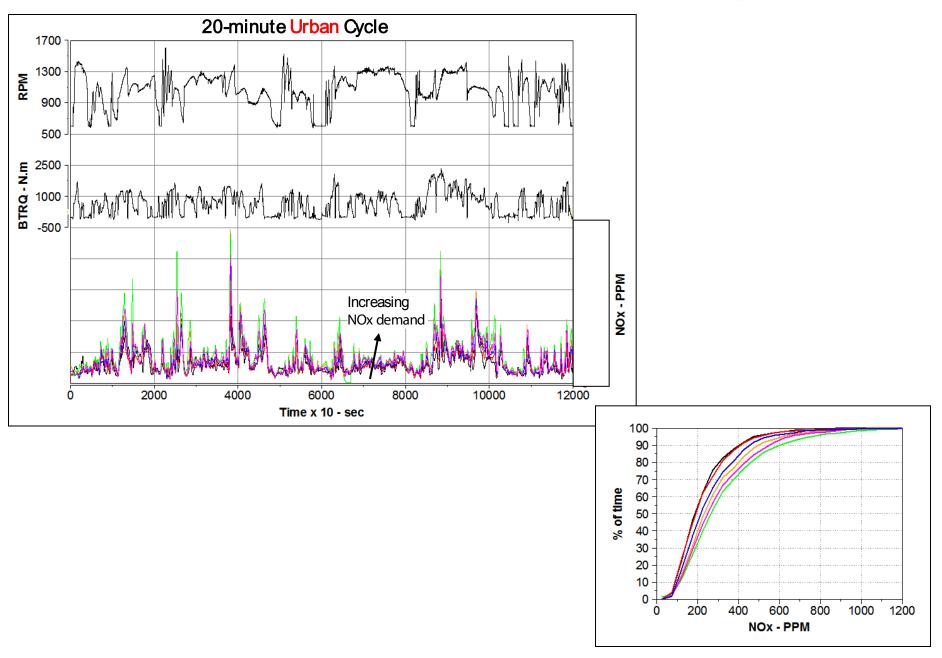
 $\mathsf{U}(\mathsf{k}) {\in \{\mathsf{u}_{\mathsf{min}} \ ; \ \mathsf{u}_{\mathsf{max}}\}}$

$$|U(k+1) - U(k)| \le \Delta U_{max slew}$$


 $|Y_i(k+1) - Y_i(k)| \le \Delta Y_{i \text{ max slew}}$ (primarily torque)

 $Y_i(k+1) \le Y_i_{max}$ (emissions constraints)

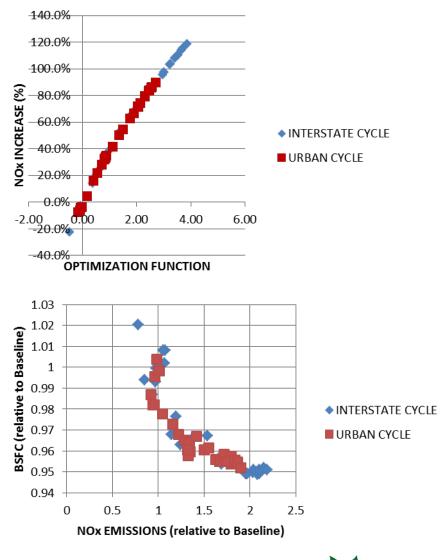

Evaluation of Model-Based Controller


- 6 discrete cycles with 6 different levels of NOx emissions output requested
- Controller is able to 'steer' emissions levels in real-time

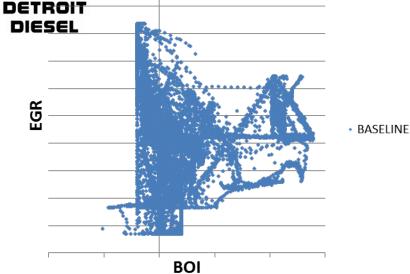
Performance

- A single input (NOx gain) is needed to drive the controller to higher/ lower NOx levels
- Controller response is predictable and repeatable
- NOx levels are scaled across the spectrum
- In general fuel efficiency increases with increasing NOx levels

DD13 Transient Cycle Results



Real-Time Control Optimization


Actual Integrated Cycle Results

- BS NOx varies as demanded by the Optimization Function
- Optimization Function weights can be constant across a cycle (as here) or varied on a point-by-point basis
- BSFC varies with BS NOx
 - 2% reduction at the same NOx level
 - 4% reduction at 30% higher NOx
- Model-based controller demonstrates lower emissions with better fuel economy

ATKINSON LLC Model-Based Control reduces Algorithm and Calibration requirements

BASELINE MBC

Conventional Engine Controller

- Algorithm intensive
- Calibration intensive

Model-based Controller

- Requires no a priori algorithm development

 algorithms replaced by fully predictive models
- Calibration replaced by real-time optimization

- Model-based control has been demonstrated and validated on 3 different engine displacements to date.
- Able to accommodate a range of engine technologies.
- Applicable to a wide range of engine operation and driving cycles.
- Two in-vehicle proof-of-concept tests successfully completed.
- Lower emissions and lower fuel consumption has been demonstrated in a much reduced time frame (and hence at much lower cost).
- Scalable to accommodate future control parameter requirements.



DETROI

- With model-based control, the calibration task is transformed into one of setting real-time emissions and performance targets.
- Majority of the experimental test cell work is performed upfront in data collection, and not after the fact in calibration.
- Validation and verification in the engine test cell are still required.
- Shifts the emphasis from the high cost physical test environment, while reducing effort required to manageable levels,
- Compatible with virtual sensing, OBD and model-based calibration efforts.
- Model-based engine control allows interaction with vehicle control to allow look-ahead capability and the continuous optimization of fuel consumption (SuperTruck Program).

Control becomes predictive rather than reactive, with substantial emissions, fuel efficiency and cost benefits.

Acknowledgements

Department of Energy Headquarters

- Gurpreet Singh
- Roland Gravel

National Energy Technology Laboratory

Carl Maronde

- FEV, Inc.
- Roger Van Sickle
- > Falk Beier
- > Ken Ball

