

Energy Efficiency & Renewable Energy

Vehicular Thermoelectrics: A New Green Technology

John W Fairbanks Vehicle Technologies Program US Department of Energy Washington, DC

Presented at DEER 2011 October 5, 2011 Detroit, Michigan

Steven Chu - Secretary of Energy Nobel Laureate, Physicist

Energy Efficiency & Renewable Energy

"Our country needs to act quickly with fiscal and regulatory policies to ensure widespread deployment of effective technologies that maximize energy efficiency and minimize carbon emission." Steven Chu

Source: LLNL 2010, data from DOE/EIA -0384 (2009), August 2010.

- The Supply and Demand for Petroleum is Accelerating Prices and Eventually Will Affect Availability
- □ Global Climate Change Issues

How Do Thermoelectrics Contribute to Mitigating the Effects of These Challenges?

Energy Efficiency & Renewable Energy

Engine Waste Heat Generator (TEG)
 Air Conditioner / Heater (TE HVAC)

- Pre-start Engine Oil and Transmission Fluid warm up.
- Battery Thermal Management
- Beverage Cooler/Warmer
- Computer and Radar (Collision Avoidance) Cooling

Heating Up... Melting Down...

Energy Efficiency & Renewable Energy

AMERICAN INDIANS

REKINDLING THE SPIRIT

PLUS TREASURES FROM A CIVIL WAR WRECK BADGERS WITH ATTITUDE

Global Climate Change Enigma

Global Climate Change is Happening
 Is there a man-made contribution?

NASA's Carbon Observatory Satellite Program should provide relevant data

 Prudent approach: limit
 "Greenhouse Gas Emissions" with economic considerations until issue is settled

Petroleum Market Forecast

Gasoline Prices 201X...

Gasoline Prices 201X...

Generate Electricity without Introducing any Additional Carbon into the Atmosphere

Automotive Internal Combustion Engine U.S. DEPARTMENT OF Waste Heat Energy

Typical Waste Heat from Gasoline Engine Mid Size Sedan

U.S. DEPARTMENT OF ENERGY

U.S. DEPARTMENT OF

□ Fleet Average Carbon Emission Regulations

- > 130 g CO₂/km in 2012
- > 95 g CO_2 /km in 2020
- □ Fine 95€ per g CO₂/km per vehicle
 - Fines could be over \$3,000/vehicle if enforced

Corporate Average Fuel Economy (<u>CAFE</u>)		
	<u>2010</u>	<u>2016</u>
Passenger Cars (MPG)	27.5	37.8
Light trucks (MPG)	23.5	28.8

- Penalty: \$5.50 per 0.10 mpg under standard multiplied by manufacturers total production for US market
- The White House announced an agreement with thirteen major automakers for car and light truck fuel economy average 54.5 mpg by 2025
 - Agreed upon by Ford, GM, Chrysler, BMW, Honda, Hyundai, Jaguar/Land Rover, Kia, Mazda, Mitsubishi, Nissan, Toyota, and Volvo

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Together account for over 90% of all vehicles sold in the United States

16

TEG Direct Conversion of Automotive Gasoline Engine Waste Heat to Electricity Renewable Energy Renewable Energy

TE Materials Performance: Figure of Merit (ZT) [Oregon State]

 $\sigma \alpha^2 =$ **Power Factor**

 $\sigma = 1/\rho = electrical conductivity$

 $\rho =$ electrical resistivity

Carrier Concentration

Nanoscale Effects for Thermoelectrics (courtesy of Millie Dresselhaus, MIT)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Interfaces that Scatter Phonons but not Electrons

Highest ZT Achieved with Triple-filled Skutterudites (GM and U of Michigan)

ENERGY Energy Efficiency & Renewable Energy

2. X. Shi, et al., submitted (2009)

PNNL/Tellurex/OSU – Latest Excellent n-type Skutterudite TE Couple Results

First Thermoelectric Generator Test on Vehicle (DOE/VT, Hi-Z/Paccar, 1994)

Energy Efficiency & Renewable Energy

Front View

Rear View

550 HP Heavy-Duty Truck Equipped with TEG (1994)

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Engine – Caterpillar 3406E, 550 HP PACCAR's 50 to 1 test track (Note speed bumps and hill) Standard test protocols used for each evaluation Heavy loaded (over 75,000 lbs) TEG installed under the cabin

Results, together with advances in thermoelectric materials, provided impetus for further development for vehicle applications

23

- Use Thermoelectrics to generate electricity for powering auto components
 - (lights, pumps, occupant comfort, stability control, computer systems, electronic braking, drive by wire etc.)
- Reduce size of alternator (target: 1/3rd reduction in size)
- □ Improve fuel economy (targets: 5% to 6%)
- Reduce Regulated Emissions and Greenhouse Gases

Awardees	Team Members
General Motors and General Electric	University of Michigan, University of South Florida, Oak Ridge National Laboratory, Marlow Industries
BSST, LLC	Visteon, BMW-NA, Ford,
	ZT Plus, Faurecia
Michigan State	NASA Jet Propulsion Laboratory,
University	Cummins Engine Company,
	Tellurex, Iowa State

GM Prototype TEG Fabrication

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

26

TEG #3 Skutterudite + Bi-Te modules

GM Prototype TEG Installation in a Chevy Suburban Chassis

GM TEG Performance in Chevy Suburban

~ 1 mpg (~ 5 %) fuel economy improvement on FTP Driving Cycle

- > 350 Watts City
- > 600 Watts Highway

TEG for Ford Lincoln MKT and BMW X6

- Designed for 500 watt output driving at 75 mph (120 kph)
- □ Weights 22.4 lbs (10.2 kg)
- 5 percent improvement in fuel economy on-highway
- Improved performance anticipated with technologies in development

Bench Test of Amerigon's Cylindrical TEG for Ford and BMW

Energy Efficiency & Renewable Energy

□ Exceeds 700W power generation. Hot Air 620° C Cold side 20° C

Amerigon's Cylindrical TEG Bench Test

TEG & Exhaust System in Lincoln MKT

u.s. department of **ENERGY**

U.S. DEPARTMENT OF

Thermoelectric Power Generation – Analytical Projections for BMW Sedans

ENERGY Energy Efficiency & Renewable Energy

□ Commercially viable thermoelectric modules

- > $ZT_{avg} = 1.6$
- Temperature range 350 900K
- □ Eliminate the alternator

Large volume commercial introduction in vehicles

Concept of Zonal Thermoelectric Air Conditioner/Heater (HVAC)

Energy Efficiency & Renewable Energy

Zonal TE units located in dashboard, headliner, A&B pillars and seats/seatbacks

□ Energy Requirements (Analytical):

- Zonal Concept cools/heats each occupant independently
- 630 Watts to cool single occupant
- Current A/C's 3,500 to 4,500 Watts cool entire cabin

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Defining Vehicle Occupant Comfort

UC Berkeley Thermal Mannequin Evaluation Detailed Localized Comfort Measurements

Human Thermal Comfort Model for Localized Cooling and Heating

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

□ Correlates well with 16 segment thermal mannequin vehicle evaluations

42

Delphi's Climatic Wind Tunnel Testing to Emulate Local Spot Cooling

U.S. DEPARTMENT OF Energy Efficiency & ENERGY Renewable Energy

UC-B thermal mannequin and human subjects used to evaluate spot cooling

Chevy Volt Battery Temperature Impacts Performance and Service Life24/7

Energy Efficiency & Renewable Energy

Battery temperature impacts vehicle performance, reliability, safety, and life cycle cost

Energy Efficiency & ENERGY **Renewable Energy**

U.S. DEPARTMENT OF

Main HTML functions in thermoelectric research

- □ Transport properties measurements
- Thermomechanical properties and reliability
- Advanced materials characterizations:
 - Atomic resolution microscopy (STEM)
 - X-ray and neutron scattering
- HTML is leading a thermoelectric characterization program via the International Energy Agency (IEA) – Advanced materials for Transportation (AMT)

Annex VIII on thermoelectrics led by ORNL

- Participating countries: USA, Canada, Germany, Japan, China and South Korea
- Participating labs: more than 10

International **Energy Agency**

DOE/NSF Partnership in Thermoelectric R&D

Energy Efficiency & Renewable Energy

University/industry collaboration, \$9M/yr over 3 years

2010 NSF/DOE Partnership - Thermoelectric U.S. DEPARTMENT OF Devices for Vehicle Applications

- An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicle - Scott T Huxtable (VT)
- Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces - Kenneth E Goodson (Stanford)
- High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Waste Heat Recovery - Li Shi (UT-Austin)
- □ Inorganic-Organic Hybrid Thermoelectrics Sreeram Vaddiraju (TAMU)
- Integration of Advanced Materials, Interfaces, and Heat Transfer Augmentation Methods for Affordable and Durable Devices - Yongho Ju (UCLA)
- High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles - Ali Shakouri (UCSC)
- Project SEEBECK-Saving Energy Effectively by Engaging in Collaborative research and sharing Knowledge - Joseph Heremans (Ohio State), Mercouri Kanatzidis (Northwestern)
- □ Thermoelectrics for Automotive Waste Heat Recovery Xianfan Xu (Purdue)
- Integrated Design and Manufacturing of Cost Effective and Industrial-Scalable TEG for Vehicle Applications - Lei Zuo, SUNY-Stony Brook

Vehicle Technologies Program

NSF-DOE TE Partnership: Automotive TE Modules with Scalable Thermo- and Electro-Mechanical Interfaces (Stanford, Univ. South Florida, Bosch)

Objectives

- Develop, and assess the impact of, novel interface and material solutions for TEG systems of particular interest for Bosch.
- Explore and integrate promising technologies including nanostructured interfaces, filled skutterudites, cold-side microfluidics.
- Practical TE characterization including interface effects and thermal cycling.

Panzer, Goodson, et al., Patent Pending (2007)

NOVEL MATERIALS LABORATORY UNIVERSITY OF SOUTH FLORIDA

Approach

- Multiphysics simulations ranging from atomic to system scale.
- Photothermal metrology including pico/nanosecond, cross-sectional IR.
- □ MEMS-based mechanical characterization.
- System design optimization by combining all thermal, fluidics, stress, electrical and thermoelectric components.

48

Effect of Interface Resistances on Thermoelectric Device Properties

Energy Efficiency & Renewable Energy

Using model of Xuan, *et al.* International Journal of Heat and Mass Transfer 45 (2002).

- Where: Annapolis, Maryland (Nearest airport: Baltimore/Washington International, BWI)
- □ When: January 18-20, 2012
- □ Cost: No Registration Fee
- □ Sponsors: Needed
- Abstracts: Submit Directly to: john.fairbanks@ee.doe.gov

U.S. DEPARTMENT OF ENERGY

Vehicular Thermoelectric Hybrid Electric Powertrain Replacing the ICE

U.S. DEPARTMENT OF

- □ Fuel Economy Requirements and Emissions Regulations
- □ Increasing Gasoline/Diesel Prices
- Automotive Industry Continually Wants "New and Improved" Technology
- Dramatic Increase in Demand for Large Quantity Thermoelectric Materials
- □ Historically Semiconductor Costs Decrease with Volume
 - > Thermoelectrics Should Follow this Trend

□ Automakers in Russia

- GM, Ford, VW, Fiat, Mercedes-Benz, Suzuki, BMW, Renault-Nissan, Toyota, AvtoVAZ/Magna
- □ Under decree 166, OEM's Must:

Achieve 60% local content within 6 years

- Equip > 30% of vehicles with locally-sourced engines and/or transmissions
- Rusnano (government) and a VC built and equipped thermoelectric clean room manufacturing facility
 - > Currently 149 workers, projected \rightarrow 333 by 2015

Thermoelectrics Production: Russia

Thermoelectrics Production: Russia

Typical Transportation Entering The 20th Century

- □ Stage coach
 - > 6 Passengers
 - > 4 Horsepower
 - (quadrupeds)
 - > Drive by Line
 - Fare 6¢/mile
- Bio-mass derived fuel
- Minimally processed
 - Stable fuel cost
 - Fuel infrastructure in place
- Emissions
 - > Equine methane
 - Agglomeration of macro particles
 - Minimally airborne
 - Recyclable

Evolution of Personal Transport

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

1900

2011

Plan "B" Entering the 22nd Century?

- From the 20th Century to the 22nd Century
 - Reduced fuel consumption and emissions by 75%
- Renewable bio-mass fuel
 Stable fuel prices
 - Stable fuel prices
- Velocity Enhanced Ambient
 Air Conditioning
 Solar Heating
 - Solar Heating
- Drive by Line

Plan "C" Entering the 22 Century?

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- □ All-electric vehicle
- Advanced batteries
- Inductive-charging
- □ Lightweight materials
- No emissions

Thermoelectrics

- **TE Air Conditioner/heater**
- TE thermal management of batteries
- TE-cooled collision avoidance system and computers
- TE-cooled/heated beverage holders
- □ TE-regenerative braking

Thank You.....Questions?

Energy Efficiency & Renewable Energy

THERMOELECTRICS: THE NEW GREEN AUTOMOTIVE TECHNOLOGY