Engine Friction Reduction Through Surface Finish and Coatings

A. Gangopadhyay, D.G. McWatt, R.J. Zdrodowski

Ford Research and Advanced Engineering Dearborn, MI

> **DEER Conference** October 19, 2012

> > Ford

- Introduction
- System and Subsystem Description
- Tribological Conditions
- Valvetrain Friction Reduction
- Piston Ring Friction Reduction
- Summary

System and Subsystem Description

Valvetrain

-Ring / Bore contact

Frictional Losses in Engine

Research and Advanced Engineering

Stribeck Curve

(Viscosity x Speed) / Load

Different Bucket Tappet Surfaces in Valvetrain

Standard Bucket – 0.10 µm Ra

Polished Bucket - 0.04 µm Ra

DLC-Coated Bucket – 0.04 µm Ra

100.00

Motored Friction Measurements

Cylinder head Torque Meter

1 piece bucket

Coolant line

Flywheel

Friction Results

Mn Phos5 - 14% improvementPolished & DLC17- 25% improvement

Wear Data

Tappet insert/camlobe Converted to ⁵⁶Co by proton beam

Piston Ring / Cylinder Bore Friction

- Factors affecting friction
 Piston Ring
 - Ring coating (Mo-NiCr, PVD, DLC, nitrided)
 - Ring tension
 - Ring design (barrel faced, 2pc vs. 3 pc oil control ring)

Cylinder bore

- Bore finish
- Bore coating to replace liners
- Bore cylindricity
- Honing patterns

Testing Sequence Lab bench tests

Single cylinder tests

Engine tests

Different Piston Ring Coatings Evaluated

Mo-NiCr Coating

DLC Coating

Nitrided layer

10µm

nd Advanced Engineering

Friction Results

Ring Wear

Next Steps

- Further opportunities exist with advanced lubricant technologies
- DOE awarded a grant to Ford to explore polyalkylene glycol base lubricants for engine friction reduction

Summary

- Polished buckets showed significant friction reduction in valvetrain application
- DLC coating on piston ring offered some friction benefit under boundary lubrication condition
- Improved surface finish on piston rings also offered friction reduction
- Thin film coatings showed lower bore wear and coatings appeared to be quite durable
- Opportunities exist for friction reduction with advanced material technologies

