

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

Michael Ruth Principal Investigator 18 October 2012

Advanced Technology Light **A**utomotive **S**ystems

Changing the Climate on Climate Change

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

Innovation you can depend on ™

Program

Timeline Technical approach

Progress

Changing the Climate on Climate Change

Innovation you can depend on ™

Program Basics

1/2 Ton Pick-up Truck application

- 40% Better miles per gallon
 Compared to V8 gasoline powered equivalent
- US Tier 2, Bin 2 emissions levels
- Commercially Viable Solutions
 - High quality, Great Performance, Low Total Cost of Ownership

Program Targets

2010 Nissan Titan

Baseline	Target
5.6L all Al V8 Gasoline	2.8L all Al I-4 Diesel
317 Hp @ 5200 RPM	210 Hp @ 3600 RPM
385 ft-lb @ 3400 RPM	385 ft-lb @ 1800 RPM
5 spd auto trans	8 spd auto trans (ZF)
5,078lb Curb	Less than or equal to baseline
Tier 2, Bin 5	Tier 2, Bin 2
18.6 mpg CAFE (476 g/mi CO ₂)	26.1 mpg[*] CAFE (390 g/mi CO ₂)

*DoE Performance Metric

Program <u>Timeline</u> Technical approach Progress

Changing the Climate on Climate Change

Innovation you can depend on ™

Program Timeline

T2B5 Vehicle Demo December 2013

4 year program

T2B2 Vehicle Demo August 2014

Engine Out at target July 2012

New Engine Available December 2012

T2B5 Eng Dyno Demo June 2013

Program Timeline <u>Technical approach</u> Progress

Changing the Climate on Climate Change

Innovation you can depend on [™]

Technical Approach

- Down sized, high power density, and minimized NVH
- Diesel engine application (charge cooler, catalysts, etc) to be weight neutral to baseline gasoline powertrain application
- Specific design package for a light duty, automotive only application
- Minimize impact on vehicle OEM by close coupling and on-engine hardware packaging
- Analysis Led Design (ALD)

Program Timeline Technical approach Progress

Changing the Climate on Climate Change

Innovation you can depend on ™

Analysis Led Design

Analysis Led Design

Weight Comparison

	ATLAS 2.8L	Baseline 2.8L	Gasoline 5.6L		
Block System	52.7	65.5	-		
Misc. Housings	0	27.1	-		
Head System	23.6	34.4	-		
Rotating/Reciprocating	29.3	31.0	-		
Valve Drive	1.2	5.3	-		
Cam & Drive	7.4	5.9	-		
Balance	6.1	14.6*	-		
Sum	120.4	183.7	-		
Sum / L	43.0	65.6	-		
Rated Power	163 kW	120 kW	235 kW		
Dressed Engine Weight	164 kg**	228 kg	225 kg		
kW / kg	1.00	0.53	1.05		

ATLAS architecture is 63.5 kg (140 lbs) lighter than baseline

*Balance shaft not available. 14.6 kg is a displacement-scaled estimate of a bolt-on style balance shaft system Number shown for comparison of architectures.

Architecture-Level Subsystems (kg)

Design Package – Cylinder Block

High Power Density

Engine Out Emissions and Fuel Economy

FTP-75 Cold Bag Performance Results

- TP CO ~0.31 g/mi
- TP N₂O ~0.03g/mi
- TP HC ~0.06g/mi
- TP NOx ~0.19 g/mi
- Cold FTP NOx Conversion ~86%

- Results do not include DOC-PNA
- Close coupling of SCRF improves warmup time
- SCRF and SCR temperatures are above 200°C during entire transient phase

FTP-75 Warm Bag Performance Results

- TP CO ~0.01 g/mi
- TP N₂O ~0.05g/mi
- TP HC ~0.02g/mi
- TP NOx ~0.03 g/mi
- Hot FTP NOx Conversion ~98%

- Close coupling of SCRF reduces thermal losses
- SCRF and SCR temperatures remain above 200°C during entire transient phase

FTP-75 NOx Emissions DOC-SCRF-SCR

NOx Emissions						
Run	Bag 1 [g]	Bag 2 [g]	Bag 3 [g]	Bag 4 [g]	Total [g/mi]	NOx η [%]
2/25/2012	1.48	0.27	0.24	0.12	0.127	94.0
2/26/2012	1.57	0.20	0.22	0.11	0.126	94.0
2/27/2012	1.30	0.12	0.23	0.10	0.106	95.0
2/29/2012	1.71	0.20	0.28	0.11	0.139	93.4
2/29/2012	1.19	0.07	0.19	0.11	0.094	95.5
3/1/2012	1.40	0.04	0.17	0.08	0.101	95.2

- >80% of NOx released during bag 0
- Expected DeNOx for ATLAS system with 0.4g/mi engine is 97% (0.012g/mi)

Evaluation of DOC-PNA on Operating Engine

Vehicle Systems Evaluation

Mule vehicle with baseline engine

- System map for FE accounting
 - Alternator, Vacuum pump, Oil viscosity, etc.

	Base 15W40 Mech Vac	15W40 Elec Vac	5W30 Mech Vac	15W40 Mech Vac No Alt load	
Fuel Economy LA-4	24.2	24.4	25.5	26.9	MPG
Fuel Economy HWFET	33.1	N/A	N/A	N/A	MPG

Acknowledgements

Partners

- Johnson-Matthey Inc. Catalyst systems
- Nissan Motors Light Truck Vehicle development
- Contributors
 - Rose-Hulman Institute of Technology Advanced control system analysis
- U.S. Department of Energy
- Cummins management and team members

