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[1] China's target reflects gasoline fleetscenario. If including other fuel types, the target will be lower.
[2] US and Canada light-duty vehicles include light-commercial vehicles.




Fundamental Efficig
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Two Paths to Hig ,ﬁ a1 A

Hot Combustion Cold Combustlon
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Heat Transfer Losses

Combustion Phasing

Charge Properties

Emissions (engine-out)

Emissions (cycle or tailpipe)
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Path to High Efflglgng
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Research Goals and Topics fe
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What’s Next?

*Many potential
configurations
to address
these
challenges

*Industry
assessment
required
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Fuel reformed
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In-cylinder Refor "‘«H

* Rich combustion yields
high levels of CO and H,

* In-cylinder reformation may
be more efficient than
external reformation

— Work still extracted from
combustion
— All effort occurs inside the
engine block
= Safer
= More easily packaged

* Previous work (SAE paper
2007-01-0475) indicated that
H, levels required for
combustion optimization
are not as high as
previously thought
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Impacting the Werking

D-EGR

Cool combustion +
dilution + reformate = °'°; A
higher y ' A

1.310 51.0 - A

/".
/ -4

1.305 - 1!1 < N< 1!5

o PDh h
olto

Cycle Avg. Ratio of Specific Heats (y)

1.300 -
6 49.5 - ® —@—-LPLEGR ($=1)
A D-EGR (D-$>1)
1.295 - ' ' ' / ' ' ! '
1290 1.295 1.300 1.305 1.310
@ LPLEGR(§=1) Cycle Avg. Ratio of Specific Heats (y)
Py A D-EGR (D-9>1) P
1.290 | . . . . High.’ Y=
0 5 10 15 20 25

EGR Rate [%] Improvod noﬂo




Test Platform
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Reduced Emissio
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What is Next for

* SWRI will be applying the D-
EGR concept to new
platforms in HEDGE lli
program

—2.0 L TC GDI engine
= 25% D-EGR

— L6 MD CNG application
= 33% D-EGR

*Internal funding has been
received for demonstration
of D-EGR concept on a 2012
MY Buick Regal

— GOAL : 20% improvement in
MPG over NA baseline
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