

3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing: - Expanding the SCR window for RDE

Dr. Tue Johannessen
Chief Technology Officer
Amminex A/S
tj@amminex.com

Amminex A/S: A Danish CleanTech company

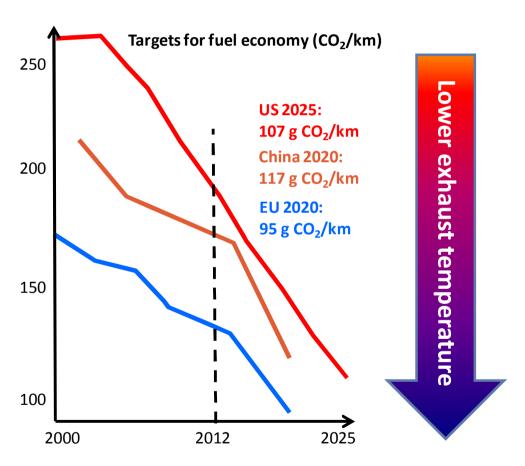
- TechCenter: Located approximately 20 km from Copenhagen airport
- Prototype workshop
- Laboratories with advanced equipment:
- Component testing:
 - Climatic chambers
 - Vibration stands
- **Manufacturing plant:**

Land: 45.800 m2 Building: 6.500 m2

Evolution of SCR on vehicles

- 1st Generation:
 - Air-assisted injection of urea-solution
- 2nd Generation:
 - Air-less injection of urea-solution enables urea-SCR on vehicles without on-board compressed air.

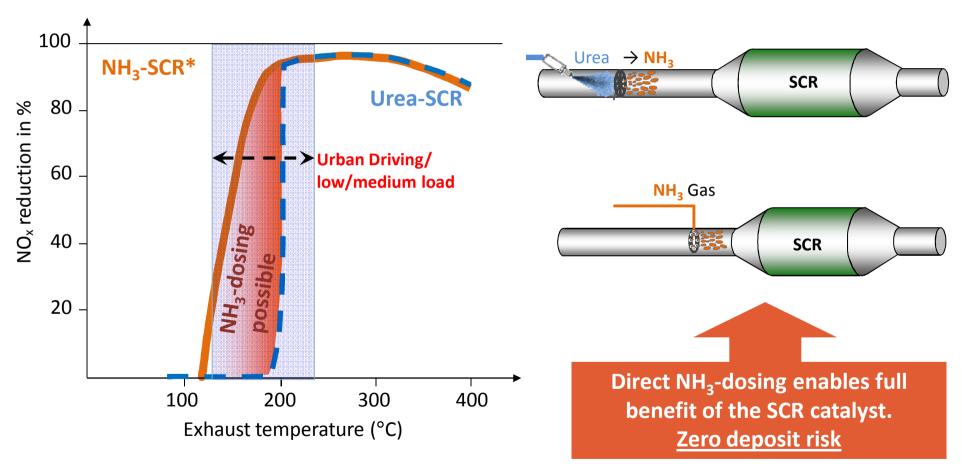
Challenges with low-T, deposits and 'controlling' the liquid reductant


- 3rd Generation:
 - Direct dosing of ammonia gas
 - Solid storage with high volumetric storage capacity

Focus: Expand SCR 'window',
Real Driving Emissions (RDE) & low CO₂

Urban air quality (NO₂) remains a major challenge ...

.. in particular in view of future CO₂ targets


Adapted from T. Johnson, Corning SAE paper 2012-01-0368

Expanding the SCR "window" while eliminating deposits

NO_x Reduction vs. Exhaust Temperature


^{*} NH₃-SCR efficiency: W. Tang et al. BASF, DOE-DEER conference, October 4th 2011, p.3

AdAmmine™: Makes ammonia safe and compact

- AdAmmineTM: Solid storage provides NH₃-safety and more than twice the volumetric capacity of ammonia in AdBlue/DEF
- Room temperature:
 Not pressurized (0.4 bar)

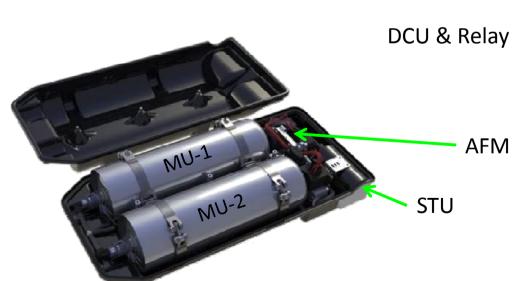
* Does not take into account the 'void' needed for freeze expansion

Production: $SrCl_2 + 8NH_3 + special formulation = AdAmmine^{TM}$

Ammonia release: Controlled thermal desorption $Sr(NH_3)_XCl_2 \leftrightarrow Sr(NH_3)_{X-1}Cl_2 + NH_3$

Usable capacity:

~ 450g NH₃ per liter AdAmmineTM



Core components of ASDS: Ammonia Storage and Delivery System

- Main Units (MU); replaceable cartridges
- Start-Up Unit (STU)
- Compact Ammonia Flow Manifold (AFM)
- Heaters/relays
- Algorithms (on ECU or DCU) for Ammonia Release Functionality
- Input: 12V, CAN (NH₃ demand)
- Output: Dynamic NH₃ dosing and system feedback

NH3-dosing possible from T_{SCR} ≈ 100°C

Examples of plug 'n' play test systems

ASDS for PC/LD:

Dosing turn-down ratio: 1:100

Dosing accuracy: ± 5% on actual value

Cartridge size: 2 x 3.6 liter

Ammonia capacity: 2 x 1.6 kg

ASDS for MD applications:

Dosing turn-down ratio: 1:100

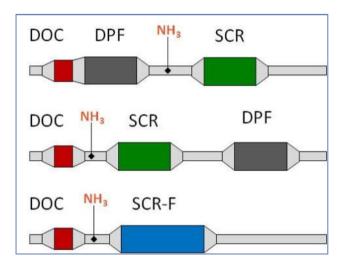
Dosing accuracy: ± 5% on actual value

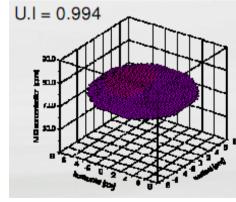
Cartridge size: 2 x 11 liter

Ammonia capacity: 2 x 4.5 kg

Corresponding to ≈ 18 liter Urea tank

Corresponding to ≈ 48 liter Urea tank


Exhaust interface & examples of DeNOx performance


Ammonia gas: Simplicity and flexibility for exhaust system design

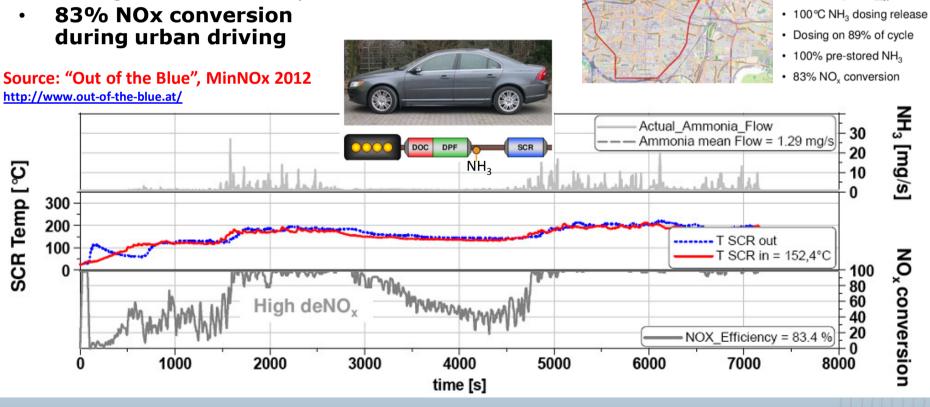
- Flexibility in SCR configuration:
 - DPF \rightarrow SCR
 - SCR \rightarrow DPF
 - SCR-coated filter
- Exhaust interface advantages:
 - No injector and no liq. evaporation (cooling)
 - Mixing is possible with lower back-pressure
 - Short mixing length & high uniformity (>0.98)
 - No deposit risk; low corrosion potential
 - → Reduced and predictable development effort for compact exhaust system

HONDA

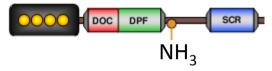
Source: M. Fischer. Honda R&D Europe

OEM consortium demonstrating high performance during real-world driving.

- Urban driving with under-floor SCR position.
- Test vehicle: Volvo S-80 with Amminex system
- One-calibration-fits-all
- 2-hour drive with 152°C avg. SCR temperature
- Dosing in 89% of the trip



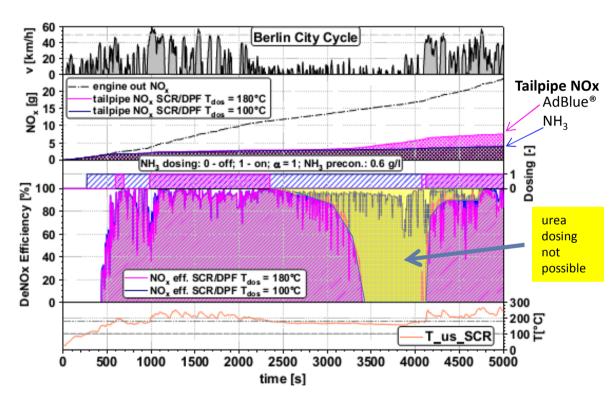
- 24.5 km circle in Berlin
- 12.2 km/h average speed
- 152°C avg SCR_{inlet}



Messages from OEM consortium: Simplified SCR calibration

- Single SCR calibration for all driving conditions
- Dosing release temperature set at 100°C upstream SCR
- Robust dosing strategy with low ammonia slip
- Gas dosing system beneficial for low temperature SCR activity
- Very good NOx conversion on off-cycle with no recalibration.

Source: "Out of the Blue", MinNOx 2012 http://www.out-of-the-blue.at/



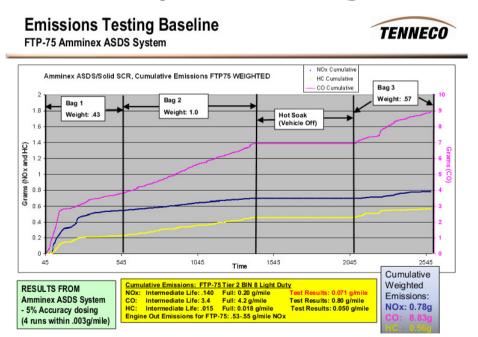
Example of low-T dosing giving improved DeNOx capabilities

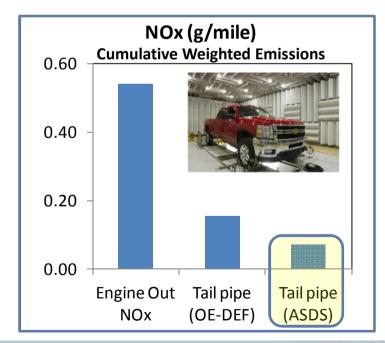
- Urban driving profile (Berlin city cycle)
- Periods with T_{SCR} lower than 180°C
 ⇒ depletion of NH₃ on the SCR catalyst
 ⇒ conversion → zero
- Tailpipe NOx:
 Direct NH₃-dosing
 (from 100°C) gives
 almost half tailpipe
 emissions compared
 with dosing from 180°C
 (liquid urea).

Source: F. Brunau (IAV), MinNOx 2012

- Tenneco owned 2011 Silverado with OEM DEF & exhaust system
- ASDS prototype fitted on the vehicle
 - 2 x cartridges, STU, AFM, exhaust inlet for NH₃
- Test Objectives:
 - Maintain functionality of OEM DEF system & Solid SCR test system
 - Enable guick switching for A:B comparison
- No change to OEM engine/DEF calibration
- NH₃ dosing strategy for ASDS on separate controller

ASDS (2 x 3.6 L cartridges + aux. HW) easily fitted with protective cover on existing platform with OEM **DEF** (~20 liter) system


FTP75 comparison: DEF vs. ASDS

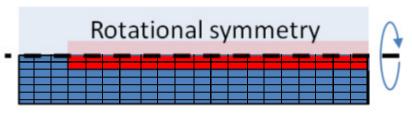


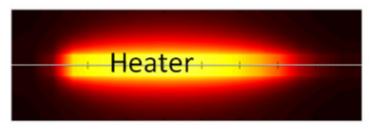
Tail pipe NOx (Cumulative Weighted Emissions) in FTP75:

OEM DEF system: 1.73 g/mileASDS/AdAmmine: 0.78 g/mile

- Reduction of tail pipe NOx was demonstrated with ASDS
- High repeatability (4 runs within 0.003 g/mile)
- Opportunity: Explore fuel economy improvement enabled by low-temperature dosing of ammonia gas.

Simulation tools for development & vehicle integration


ASDSim[™]


Simulation Model: ASDSim

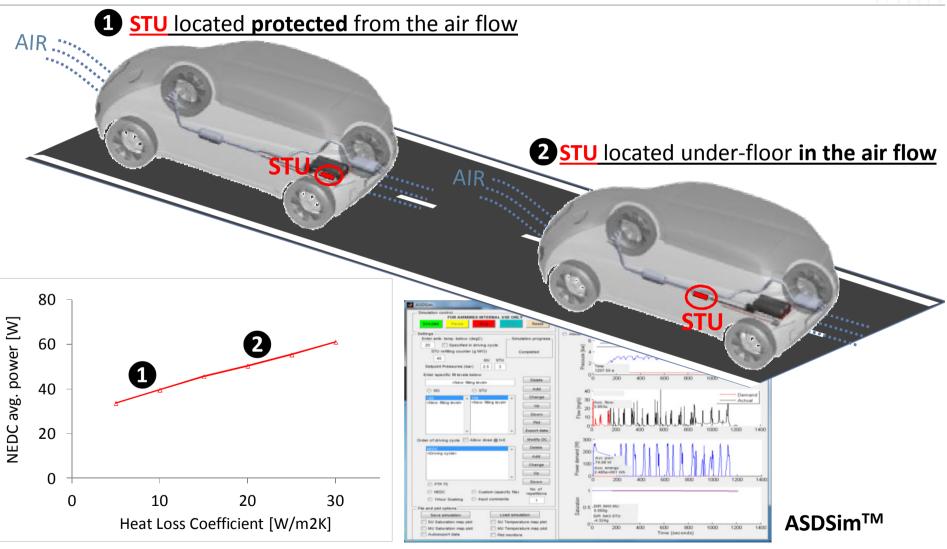
- A physical and chemical FEM model describing the full spatial distribution of temperature and ammonia inside the STU and the MU (cartridge)
- Needs only material properties (measurable)
- Robust and predictive beyond the known (tested) ranges

Start-up unit

Example of simulation of temperature and NH3 distribution (saturation) in a partially empty STU during warm-up

Graphical User Interface

Time (seconds)

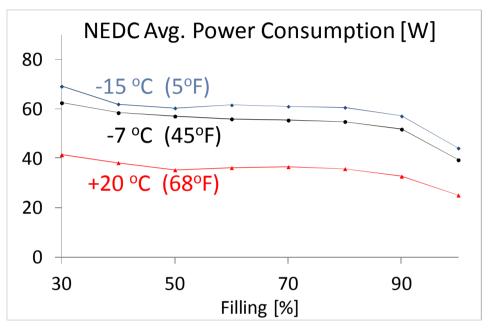

Simple Graphical User Interface (GUI) to aid the user: 2 Results Sec/sec plots of both STU & MU M ASDSim Simulation control FOR AMMINEX INTERNAL USE ONLY MU2500 Prototype Iso **ASDSim** AMMINEX Reset STU2DR PTC Mdl 1602 Initial FillingMU: 100% | Initial FillingSTU: 100% Enter amb. temp. below (degC) Simulation progress. Specified in driving cycle Pressure STU refilling counter (g NH3) Completed Setpoint Pressures (bar) 1207.50 1 User inputs & Enter specific fill levels below 200 600 800 1000 1200 1400 Delete «New filling level» simulation control Add O MU O STU Demand Change Flow Actual <New filling level> <New filling level-Up 20 -Down **Settings** Piot 1400 Export data Order of driving cycle Allow dose @ t=0 Modify DC E Delete Heaters <Driving cycle> Add Custom 100 -74.08 W Change Acc. energy: drive cycles 2.485e+001 Wh Up 1400 1200 Down FTP 75 No. of Custom (specify file) repetitions **Saturation** nput comments D.5 -DIff. NH3 MU: 3 Save & 0.000g Load simulation Diff. NH3 STU -4.3249plot options SU Saturation map plot SU Temperature map plot 400 600 800 1000 1200 1400

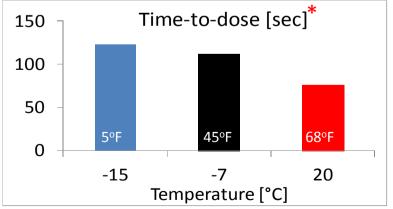
MU Temperature map plot

Simulation example:

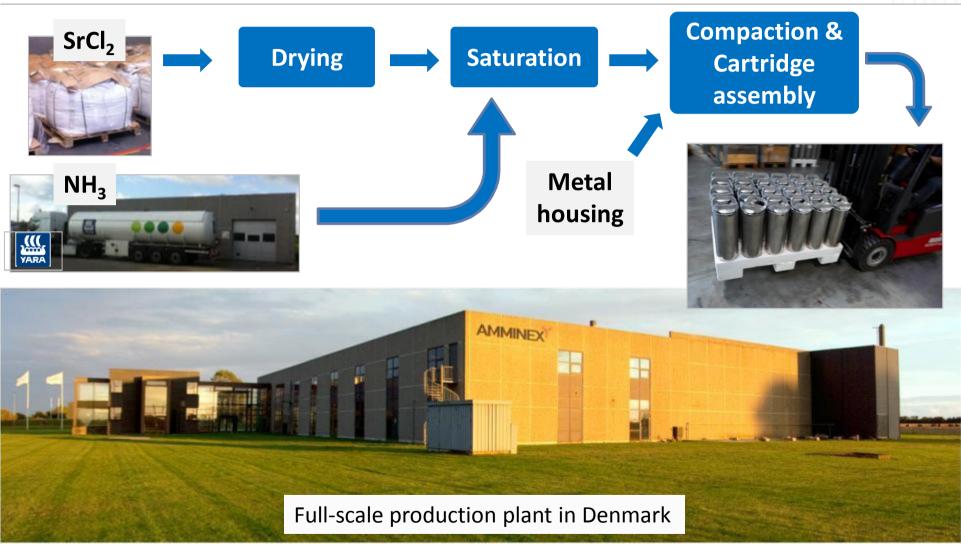
The influence from STU mounting

Simulation example:


Average power consumption and time-to-dose



- Purpose: To simulate the effect of ambient temperature during NEDC cycle
- Low impact on performance from different STU fill levels.
- Low ambient temperature gives slightly higher power consumption.
- Freezing temperatures:
 Even at -15 °C there is short time-to-dose.
 There is no `thawing-of-ice' required (solid/liquid phase transition)


* Performance example of one STU.

Time-to-dose Can be tailored to OEM requirements

AdAmmine processing & system concepts

Video from Amminex production facility shown in the exhibition booth

Examples of system layouts by

Summary

AMMINEX
Solid technology for a clean world

- NOx reduction under all conditions
 - Low/medium engine load; low ambient temperature
 - Works when the SCR catalyst is active
 - Robust SCR calibration
- Positive impact on fuel economy
 - Eliminate or reduce warm-up strategies
 - Reduced pressure drop in 'mixing' zone
- Exhaust interface & calibration
 - Simple interface & no injector
 - No risk of deposits
 - Simplified SCR calibration
- Authorities: Tampering is very difficult
- No shelf life issues for NOx reductant.
 - No degradation or freezing; unlimited shelf life
- Compact & customer friendly
 - Service interval capacity is an option
 - No contamination risk

- On-going work & Challenges
 - Implementation of cartridge distribution network in cooperation with Tier-1
 - Standardization of cartridge sizes among OEMs for 'similar' applications