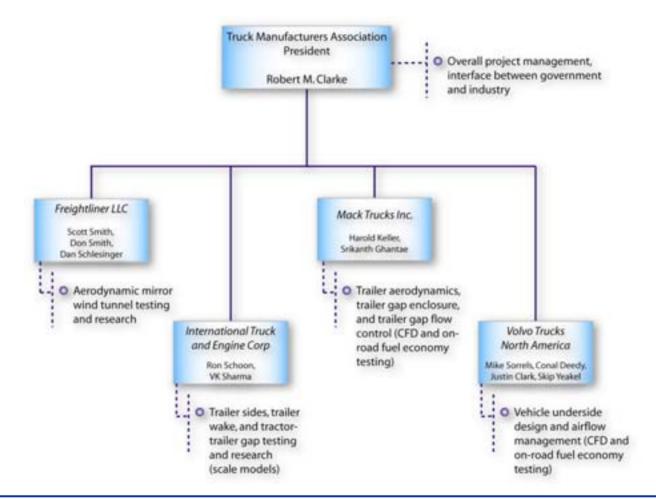
Truck Manufacturers Program to Reduce Aerodynamic Drag

Robert M. Clarke Truck Manufacturers Association DOE Heavy Vehicle Systems Optimization Merit Review, April 2006 Truck Manufacturers Program to Reduce Aerodynamic Drag

Project Overview

- Trucks dominate freight transportation, moving 64% of the value of all freight, 58% of the tonnage, and 32% of the ton-miles
- Aerodynamic drag is a major component of total horsepower needs and, therefore, fuel use of Class 8 trucks at highway speeds
- DOE goal: reduce aerodynamic drag of tractorsemitrailer systems by 20%, which translates to an approximate 10% reduction in fuel consumption
- Project goal is to develop practical aerodynamic solutions for near-term implementation and immediate fuel savings


Project Approach

 Four major U.S. truck manufacturers independently pursuing complementary research

- Freightliner LLC, International Truck and Engine Corporation, Mack Trucks Inc., Volvo Trucks North America
- Focus on practical aerodynamic solutions for on-highway tractorsemitrailers
- Combination of wind tunnel testing, computational fluid dynamic modeling, and real-world vehicle testing to determine effects of devices and systems on aerodynamic drag and fuel economy
- Two-phase project
 - Phase I: Preliminary research and testing to determine most promising devices or vehicle modifications (CFD, wind tunnel)
 - Phase II: More in-depth testing of most promising devices or vehicle modifications (wind tunnel, on-road)

Project Structure

Project Accomplishments: General

- Researched tractor and semitrailer aerodynamic devices and their effects using CFD and wind tunnels
 - Aerodynamic mirror wind tunnel testing and research (Freightliner)
 - □ Trailer side, trailer wake, and trailer gap (International)
 - Trailer aerodynamics, trailer gap enclosure (Mack)
 - Vehicle underside design effects and airflow management (Volvo)
- Quantified effects of changes to the tractor-semitrailer relative to baseline vehicles
- Determined best potential devices and vehicle modifications for Phase II work

Project Accomplishments Freightliner (1)

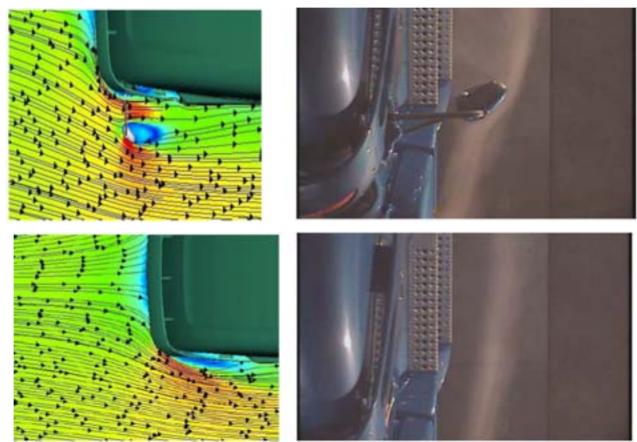
- Quantitatively assess fuel efficiency performance benefit that might be achieved with advanced mirror technology relative to current baseline technologies
- Combination of full-scale wind tunnel testing in Freightliner dedicated wind tunnel and computational fluid dynamics

Project Accomplishments Freightliner (2)

AERODYNAMIC DRAG DUE TO MIRRORS (% OF TOTAL VEHICLE DRAG)

	Yaw Angle							
-6 degrees		0 degrees	+6 degrees					
Wind Tunnel	3.2%	4.5%	2.4%					
CFD	4.0%	5.8%	2.1%					

- Good agreement of CFD and wind tunnel results (CFD includes moving ground plane and spinning wheels)
- CFD and wind tunnel provide directionally similar results


OCIATION

Project Accomplishments Freightliner (3)

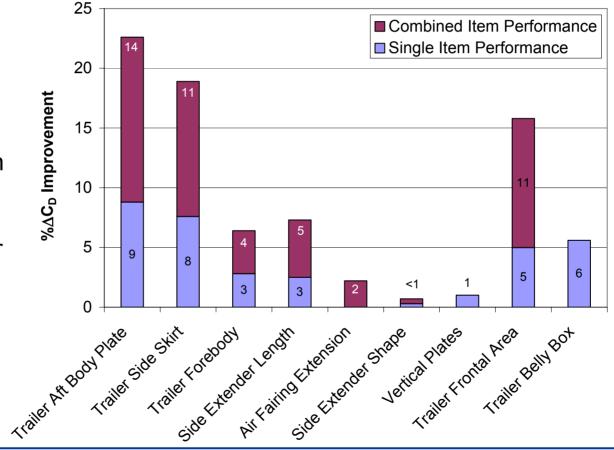
SAMPLE FLOW VISUALIZATION FROM CFD AND WIND TUNNEL

0 degree yaw with mirrors CFD (left) Wind Tunnel (right)

0 degree yaw without mirrors CFD (left) Wind Tunnel (right)

TRUCK

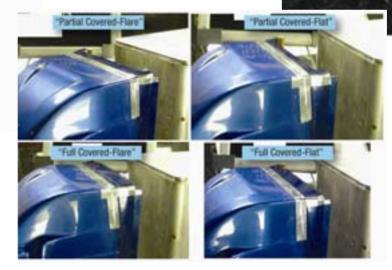
Project Accomplishments International (1)


- Focus on practical devices to reduce aerodynamic drag
 - Tractor trailer gap closure
 - Trailer side
 - Trailer wake
- Scale model testing (1/8 scale models) at Texas A&M wind tunnel
- Incrementally evaluate about one dozen concepts

Project Accomplishments International (2)

PERFORMANCE OVERVIEW OF DRAG REDUCTION DEVICES

Up to 23% improvement in drag coefficient with combination of devices (trailer aft body plates and trailer skirts)


MANUFACTURERS

TRUCK

Project Accomplishments International (3) SAMPLE SCALE MODEL DEVICES

TRUCK MANUFACTURERS ASSOCIATION

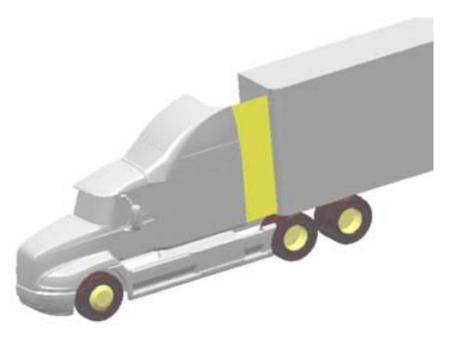
Project Accomplishments Mack (1)

- Test and evaluation of practical devices and systems to improve aerodynamic drag
 - Trailer gap enclosure (side extensions)
 - Trailer aerodynamics
- Combination of CFD modeling, discussion with experts in aerodynamics field, on-road testing

Project Accomplishments Mack (2)


TRAILER AERODYNAMIC AIDS

Strakes from Solus


Trailer Side Skirts by Freight Wing Inc.

Vortex Traps from Solus

CAB SIDE EXTENDERS

TRUCK MANUFACTURERS ASSOCIATION

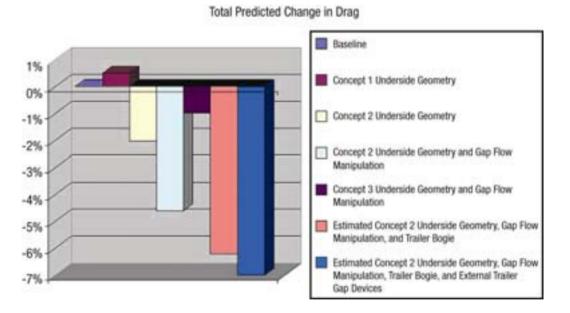
Project Accomplishments Mack (3)

- Estimated drag force improvement for side extenders
 - 4% reduction at 0 degree yaw
- Through consultation with aerodynamics experts, determined most promising concepts and combinations for Phase II testing (see chart)

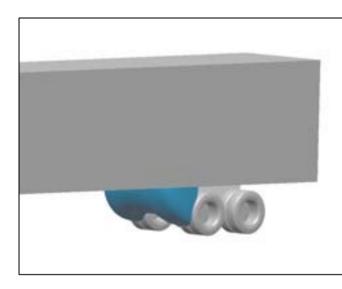
Test Number Device Description	0	1	2	3	4	5	6	7	8
Boat Tail 48"	•								•
Boat Tail 18"			٠	•	٠		-	٠	
Vortex Trap				•					•
Side Skirts					•		•	•	•
Strakes	•	•	•	•	•	•	•	•	•
Cab Side Enclosures						•		•	

Devices Included in the Tes

Project Accomplishments Volvo (1)

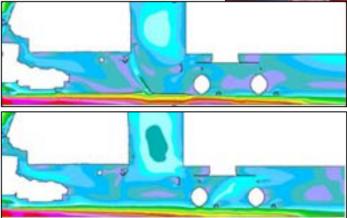

- Develop and demonstrate practical solutions to improve fuel economy by reducing aerodynamic drag in the focus areas
 - Focus areas = tractor and trailer underside and tractor-trailer gap
- Combination of CFD simulation, analysis of wind tunnel results, and on-road testing

Project Accomplishments


Volvo (2)

- Several combinations of underside geometry and trailer gap manipulation examined
- Trailer bogie deflector also examined
- Underside of tractor and trailer contribute about 35% to total vehicle drag
- Estimated effect of underside geometry modification, trailer gap manipulation, and trailer bogie deflector is 7% drag reduction

TRUCK


Project Accomplishments Volvo (3)

Trailer gap manipulation devices

Underside air flows

TRUCK MANUFACTURERS ASSOCIATION®

Collaborations

- Collaboration among four competitor OEMs to pursue complementary research and share results
- Work with existing DOE aerodynamic consortium
 - Presentation of project goals and objectives to consortium meeting (mid-2005)
 - Use of consortium members in Mack project to identify areas of potential interest for trailer aerodynamics

Future Plans

- Complete Phase II work for each manufacturer to achieve real aerodynamic benefits for Class 8 tractor-semitrailer combinations
 - Freightliner: Full-scale wind tunnel testing of different common mirror systems (West Coast style and aerodynamic) to determine aerodynamic drag effects
 - International: Full-scale prototype testing of concepts for tractor-trailer gap, trailer side, and trailer wake, for on-road impact on fuel economy
 - Mack: Full-scale prototype testing of combinations of boat tails, vortex traps, side strakes, side skirts, and cab enclosures for on-road impact on fuel economy
 - Volvo: Full-scale prototype testing of combinations of trailer bogie deflector, underside devices, and trailer gap devices for on-road impact on fuel economy
- Conduct end-of-project demonstration (location and date TBD, but probably in the fall of 2006) with sample test vehicles from all four manufacturers to illustrate results to government and industry representatives

Summary

- <u>Relevance</u>: Contribute toward DOE goal of reducing aerodynamic drag of Class 8 vehicles by 20%
- <u>Approach</u>: Examine aerodynamic devices and changes in vehicle configuration to understand drag effects through combination of CFD modeling, wind tunnel testing, and on-road vehicle testing in order to develop more aerodynamic tractor-semitrailer combinations
- <u>Accomplishments</u>: Calculated potential aerodynamic drag reductions of 4% to 23% for tractor-semitrailer systems
- <u>Collaboration</u>: Cooperation among four major truck manufacturers, work with existing aerodynamic consortia
- <u>Future Research</u>: Pursue combination of wind tunnel testing and onroad testing to demonstrate actual aerodynamic drag and fuel economy effects of changes to vehicle configuration