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21CTP Technical Goal: 

Program Structure Sub-Program Element R&D Phase DateProject ID/Agreement ID 

Integration of 
materials, lubricants 
and surfaces into a 
low-friction system 

Principal Investigator(s) 
-G. R. Fenske, R. A Erck, O.O Ajayi, and A Erdemir, Argonne 
National Laboratory, 630-252-5190, gfenske@anl.gov 
-L. Oberto, Ricardo Engineering 
- Z. Filipi, University of Michigan 

Technology Development Manager 
Lee Slezak, DOE/OFCVT 
(202) 586-2335; Lee.Slezak@hq.doe.gov 

Engine Systems: Develop technologies to achieve 55% efficiency by 2012 

15171 Systems Optimization Parasitic Energy Losses Applied Research 4-06 

Project Objectives 
-Increase fuel efficiency by reducing engine friction. 
-Develop mechanistic models of parasitic engine losses (and 
integrate with vehicle system analysis codes – e.g. PSAT) 
-Validate models and codes with experiments 
-Identify/assess advanced tribological concepts/systems to reduce
engine friction (e.g. lubricants, additives, engineered surfaces) 
FY 2005/6 Focus 
-Model development, application of codes to predict fuel economy
savings, and laboratory tests of advanced tribological concepts 
-Laboratory tests of low friction additives and coatings  
-Design of instrumented single-cylinder diesel engine 
Planned Duration 
October 2002 to September 2008 
DOE Funding/Industry Cost Share
FY05:$125K FY06: $175K/$35K 

Accomplishments 
Accomplishment 1: Mechanistic model predictions of .5 to 1.4% fuel 
savings with low friction surfaces 
Accomplishment 2: Mechanistic model predictions of 3-4% fuel 
savings with low friction surfaces and low-viscosity lubricants 
Accomplishment 3: Lab demonstrations of reduced friction surface 
treatments (up to 80 % reduction) 
Significant Future Milestones
Milestone 1: Instrumented single cylinder test rig – Dec 06 
Milestone 2: Lab ring-on-liner tests of low-friction additives – Apr 07 
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Relevance to 21CT Goals	 Technology Transfer
 

�	 Reducing friction in engines 
and drivetrains will increase 
the fuel efficiency of 21 CT
trucks 

�	 Mechanistic models and low-
friction engine/drivetrain
systems will provide a 
pathway to achieve engine
and vehicle fuel efficiency 
improvements (50% thermal
by 2010; 55% by 2012) 

�	 Collaborations with 
researchers at: 
–	 Ricardo Engineering 
–	 Caterpillar 
–	 Eaton (CRADA) 
–	 University of Michigan 
–	 Suppliers 

�	 Subcontractors: 
– Ricardo Engineering 
– University of Michigan 

�	 Potential commercialization 
pathway 

–	 Licensing of mechanistic 
models/codes (Ringpak, 
Valdyn, Pisdyn, Orbit) 

–	 Integration of mechanistic 
models with vehicle 
system models/codes (e.g. 
PSAT) 

–	 Materials & coatings, 
surface engineering, and 
additive development. 
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More Energy is Lost to Friction Than Delivered to the Wheel
 

� Energy Map- Passenger Vehicle EPA Cycle
 
–	 Roughly 10% of energy input consumed by 

friction 
–	 1 million barrels/day lost to friction in 

transportation 
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Energy In 

100% 

Indicated HP 

35% 

Brake HP 

23% 

Exhaust 

35% 

Engine Cooling 

30% 

Other Engine Friction 

0.4% 

Piston Assembly 

2.8% 

Valve Train 

1.3% 

Bearings 

1.0% 

Seals 

0.5% 

Air Pumping 

6% 

Others 

1.6% 

Transmission 

2.0% 

Braking 

2.0% 

Coast/Idle 

4.0% 

Axle 

1.6% 

Accessories 

Oil Pump - 0.5% 

Air Pump – 0.1% 

Water Pump - 0.1% 

Fuel Pump - 0.1% 

Power Steering – 0.5% 

Cooling Fan – 0.5% 

Alternator – 0.5% 

At Wheels 

9.5% Viscous Loss – 1.35% 

Friction Forces – 0.95% 

Aero Drag 

4.0% 

Tires 

5.5% 

15% of IMEP 
(Indicated Mean 

Effective Pressure – HP 
normalized to engine

displacement) 

Blowby – 0.5% 



Objective: Reduce Parasitic Engine Losses to 5-10% IMEP
 

� Integrate mechanistic 
models of friction losses for 

Model low-friction 
 
surfaces and 
 

lubricant viscosity
 

Lab-scale 
 
tribological testing
 

Instrumented, fired
 
engine tests
 

Multi-cylinder engine 
 
tests
 

specific engine components 
� Apply codes to predict 

FMEP at different engine 
loads and speeds 

� Calculate the impact of 
friction and viscosity on fuel 
economy 

�	 Benchtop tests to identify 
potential low-friction 
material/coating and lubricant 
systems 

�	 Fired, single cylinder 
diesel engine studies to 
validate approach 

� Multicylinder Engine 
tests 

� PSAT, fleet tests, ….. 
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Technical Accomplishment Summary 

� Integrated mechanistic models to predict impact of low-friction surfaces 
and low-viscosity lubricants on parasitic energy losses (FMEP) and fuel 
economy 

�	 Developed/selected lab tests to evaluate and optimize advanced low-
friction technologies for engine components 
–	 Comparison with baseline technologies 

�	 Selected approach to validate models and low-friction technologies using 
a single-cylinder diesel engine 
–	 Ricardo/U Mich. 

�	 Establishing protocols to translate 8-mode FMEP results into formats 
compatible with PSAT vehicle simulation toolkits. 
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Role of Boundary and Hydrodynamic Lubrication Regimes
- Tribological System 

� Different regimes of 
lubrication depending on the 
degree of contact between 
sliding surfaces 

� Boundary lubrication 
characterized by solid-solid 
contact – asperities of mating 
surfaces in contact with one 
another 

� Contrast boundary lubrication 
with full-film lubrication in 
which mating surfaces are 
separated by a film. 

� In between, mixed lubrication 
occurs. 

Boundary Lubrication 

Mixed 
Lubrication 

Full Film 
Lubrication 

Viscosity * Speed/Load 
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ANL/Ricardo Phase I Studies – Identify/Model Frictional Losses in a Diesel 
Engine & Impact of Lowering Boundary Layer Friction on Fuel Economy 

�
 FMEP calculated at 8 different modes and 
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m
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weighted to predict effect on fuel consumption •Rocker bushing * 
•Rocker tip to valve * for a HD driving cycle 
•Pushrod to rocker interface * 

•Piston pin bearing * 
•Rings * 
•Piston Skirt * 

•Cam - follower interface * 
•Cam bearings * 
•Follower - pushrod interface * 
•Timing drive 
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•Crankshaft windage 

•Crankshaft main bearings 
•Main seals * 
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3 (4%) 

4 (15%) 5 (8%) 

6 (6%) 7 (8%) 8 (5%) 

Weighting factor 

0 500 1000 1500 2000 
•Oil PumpLoad/IMEP (kPa) 

•Fuel injection system 

FCSF = 
(Fuel Consumption Scaling Factor) 

IMEP + ΔFMEP 
IMEP 

* interface considered in current study 

8 



Boundary and Hydrodynamic Friction: Model Impact on
FMEP and Wear Severity 

� Total FMEP is the sum of the Asperity friction and the hydrodynamic friction 
– Boundary FMEP decreases with increasing lubricant viscosity – shifting from BL to ML regime 
– Hydrodynamic FMEP increases with increasing viscosity 

Piston FMEP versus Viscosity Grade	 Normalized Piston - Liner Contact Severity 
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Modeled Contact Severity/Loads – Impact of Low-
 
Viscosity Lubricants on Engine Components
 

�	 As lubricant viscosity is reduced, contact between the 
piston skirt and cylinder liner increases in both magnitude 
and extent	 Normalized Piston - Liner Contact Severity 

�	 Predicted total average contact severity per cycle, using 4.5 

SAE 5 oil, is more than 4  times as high as that using 4.0SAE 40 oil 
�	 This model suggests that to allow the use of SAE 5 oil, a 3.5 

surface treatment would have to provide approximately 
four times the wear resistance of the baseline system, if 3.0 
the wear resistance remained constant over time 
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Argonne/Ricardo Phase II Studies – Impact of Reducing 
Lubricant Viscosity – 3 to 4 % Fuel Savings 

–	 Significant savings possible by -2%
 
combining low friction boundary 
 
friction technologies AND low- -3%
 

viscosity lubricants -4%
 

� Reducing the boundary layer 1%
 

friction enables the use of a 0%
 

lower-viscosity lubricant -1%
 

�	 Reducing only the asperity 4%
 


 
0% Reduction 
30% Reduction 
60% Reduction 
90% Reduction 

friction improves fuel economy 
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–	 Fuel savings dependent on 
driving schedule – using low-
viscosity lubricants (and low 
friction surfaces) under driving 
cycles with high percentages of 
idling provide significant savings 

-5% 

-6% 

-7% 
0  10  20  30  40  50  
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Benchtop Validation of Friction – Can We Achieve 30 to 
90% Reductions in Boundary Friction? And How? 

�	 Measurement of friction using benchtop 
tribometers providing data on the 
potential of advanced engineered 
surfaces and lubricants to provide low-
friction tribological systems 

–	 Candidate low-friction technologies 
•	 Coatings (Amorphous carbon, 
 

Superhard nanocomposites, 
 
Commercial Coatings – CrN, …)
 

•	 Lubricants (Additives – formation 
 
of low-friction boundary films)
 

•	 Textured surfaces 

–	 Benchtop test configurations 


•	 Unidirectional Sliding 

–	 Pin-on-Disc 


–	 Block-on-Ring 

•	 Reciprocating Sliding 

–	 Ring-on-Liner 
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Argonne – Development of a Test Rig to Simulate Ring-Liner 
Conditions and Evaluate Potential Low-Friction Strategies 

�	 Modified a Cameron-Plint Rig to 
operate with prototypic liner 
segments and ring segments 

Liner Segment 

Ring Segment 
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Computer Data Collection 

�	 Measurement of friction, rpm, normal force, instantaneous position, contact resistance, 
temperature 

�	 Samples Data @ 2 kHz 
�	 Data reduced with Sigmaplot software 
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Ring-on-Liner: Lubricant Additive (ROL 060228)
 

� 10W-30 Synthetic � Low-Friction Additive
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Low-Friction Additive Consumed During 9-Day Benchtop Test
 

�	 During extended 
 
break-in tests with low-
 
friction additive, the 
 
friction was initially 
 
low, continued to 
 
decrease, then 
 
increased as the 
 
additive was depleted
 

0.15	 0.15 0.15 
060319 10 rpm 150N silk first 3600 s 060319 10 rpm 150N silk 3600 s at 240,000s 060319 10 rpm 150N silk mid 3600 s 

0.1 0.1	 0.1 

0.05 0.05	 0.05 

µ 0 µ 0 

-0.05 -0.05 -0.05 

-0.1 -0.1 
-0.1 

-0.15 -0.15
-1.5 -1 -0.5 0 0.5 1 1.5 -0.15Position (cm) -1.5 -1 -0.5 0 0.5 1 1.5 

Position (cm) -1.5 -1 -0.5 0 0.5 1 1.5 
Position (cm) 
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Pin-on-Disc: SuperHard Nanocomposite
(More Details To Be Presented by Ali Erdemir) 

�	 Room temperature pin-on-disc friction studies of steel ball sliding against 
steel disc or Superhard Nanocomposite, low-friction coatings – 50 % 
reduction in friction 
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Block-on-Ring: Scuffing Performance
 
(More Details To Be Presented by Ajayi/Erdemir)
 

�	 Operation with low-
viscosity fluids 
raises concerns with 
regard to scuffing.Steel/Steel 	
Can we identify600 N 
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load 	 additive systems 
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scuffing resistance? 
–	 Block-on-ring 
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Textured Surfaces as a Method to Reduce Hydrodynamic

and Mixed Lubrication Friction 

� Argonne (in collaboration with 
Technion University – Prof. I. 
Etsion) is evaluating the 
potential of laser surface 
texturing to reduce friction on 
engineered surfaces 

� Results suggest LST may 
provide significant energy 
savings regimes where 
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Fired, Single-Cylinder Diesel Tests: Ricardo/U-Mich – Phase 
III – Validate Models and Low-Friction Technologies 

� Validate model predictions and low-friction technologies 

�	 Ricardo examined multiple approaches to validate fuel economy predictions 
–	 Direct fuel consumption, instrumented multi-cylinder engine, instrumented 

single-cylinder diesel engine, motored engine, … 
� Selected Approach (Instrumented, Single-Cylinder Hydra Engine) : 

–	 Modify an existing single-cylinder test engine for friction measurement, 
using the fixed-sleeve approach 

–	 Run the engine with a variety of lubricants, with and without NFC coatings 
at each of the interfaces 

–	 Measure instantaneous friction at these interfaces 
–	 Calculate the change in asperity friction coefficients due to the application 

of the coatings 
–	 Use the experimentally-derived friction coefficient improvements to refine 

the earlier estimates of fuel economy improvement over the FTP HD test 

20 
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Ricardo/U-Mich – Modifications to Hydra Engine for in-situ 
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Friction Force Measurements 

� Ricardo has been producing 
single cylinder engines for 
research and development since 
1919 

� A number of standard conversion 
kits exist to extend the range of 
operation of a Hydra engine, such 
as from gasoline to direct 
injection diesel operation 

Friction 
Force 

Strain 
Gauge 

Sleeve 

Liner 

Support 
Wire 

Coolant 

Friction 
Force 

Thermocouples 



Proposed Test Matrix 

� The following combinations of engine build, load condition, and 
lubricant will be tested:
 

Engine 
Configurations 

Oil Viscosity Operating Conditions Data Collected 

Baseline – Stock ring 
and Liner 

SAE 40 Partial Load 1 
Partial Load 2 
Full Load 

Cylinder Pressure 
Oil Sump Temperature 
Coolant Temperature 
Liner temperature Profile 
Friction Force 
Engine Blow-By Gas Flow 

SAE 20 

Low Friction Ring 
and/or Piston 

SAE 40 Partial Load 1 
Partial Load 2 
Full LoadSAE 20 

Lubricant Additive (s)) SAE 40 Partial Load 1 
Partial Load 2 
Full LoadSAE 20 

Low-Friction Ring & 
Liner 

SAE 40 Partial Load 1 
Partial Load 2 
Full LoadSAE 20 
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Summary/Conclusions 

� A series of mechanistic models have been developed and integrated into a 
suite of codes capable of predicting parasitic energy losses in a heavy duty 
diesel engine 

�	 The code predicts the impact of the tribological environment on the FMEP 
and fuel consumption by appropriate application of weighting factors applied 
to calculations at 8 engine load/speed modes 

�	 Fuel consumption savings up to 3-4 % are predicted through a combination 
of low viscosity engine lubricants coupled with low-friction surfaces 

�	 Benchtop friction tests are being employed to identify potential 
technologies/approaches to achieve levels of friction reductions required to 
improve fuel economy and to determine the conditions necessary to achieve 
reduced friction 
– Additives, coatings, and surface texturing 

� Modifications to a fired, single-cylinder diesel engine are in progress to 
provide in-situ friction measurements of baseline and advanced low-friction 
components and to validate the mechanistic models 
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Future Activities: 

� Single-Cylinder, Fired Diesel Tests with in-situ measurement of ring/piston – 
liner friction forces 
– Effect of viscosity, low friction coatings, and additives 

� Multi-cylinder engine and/or fleet studies 
– Fuel efficiency and system durability 

� PSAT integration 
– Development of PSAT modules to incorporate mechanistic models into 

vehicle system efficiency studies 
� Auxiliaries 

– Parasitic energy losses in auxiliary systems 
• Fluid pumps (fuel, oil, water) are often oversized to accommodate 

degradation/wear over the system lifetime. 
• Compressors 
• Cooling fan, alternator, steering 

24 

� Transmissions and axles (Eaton/Caterpillar/ANL/NWU) 



Closing Remarks ……
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FCSF = 
(Fuel Consumption Scaling Factor) 

IMEP + ΔFMEP 
IMEP 

Application of Mechanistic Models to Vehicle System Optimization –
Component Optimization & Vehicle Optimization (PSAT) 

� Develop ‘look-up’ tables/regressions for use in PSAT Vehicle Simulation 
Software 
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–	 Do you treat only the skirt, only the rings, or both?? A low-friction treatment (e.g. 
coating) applied only to the rings is not much different from treating only the skirt. 
Treating both rings and skirt helps at low viscosities. 

–	 Alternatively can one identify an additive that effectively works on all surfaces 
–	 Can one tailor the surface chemistry of select components for enhanced 
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Which Components Have the Biggest Impact – What 
Should be Treated? 

� Approach can be extended to consider treating a few select components with variable 
friction reductions 
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Benchtop Studies – What Is the Magnitude of Friction Savings That Can be 
Achieved, and What Level of Increased Protection 

�	 Models assumed 30, 60, and 
 
90% reductions in boundary 
 
friction – what are realistic 
 
friction coefficients, how do 
 
they compare to the baseline 
 
assumptions – are there 
 
technologies that can 
 
provide these levels of 
 
improvements
 

�	 Pin-on-Disc, Reciprocating, 
 
Block-on-Ring, and Ring-on-
 
Liner Configurations
 

–	 Friction, Wear, Scuffing-
 
Resistance of test coupons 
 
and prototypic rings and 
 
liner segments
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� Coatings, Surface Texturing, 
and Additives 



Ricardo Study – FMEP SAE 40
 
Energy In 

100% 

Indicated HP 

IMEP (kPa) 

Brake HP 

BMEP (kPa) 

At Wheels 

?? 

Exhaust 

?? 

Engine Cooling 

?? 

Aero Drag 

?? 

Tires 

?? 

� FMEP is a significant fraction of 
the IMEP 

Other Engine Friction 

0.4% 

Piston Assembly 

2.8% 

(8% IMEP) 

Valve Train 

1.3% 

(3.7% IMEP) 
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1.0% 

(2.9% IMEP) 

Seals 

0.5% 

Air Pumping 

6% 

Asperity 
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Viscous 
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Ricardo Study – FMEP SAE 20 & 90 % Asperity 
 
Reduction
 Energy In 

100% 

Indicated HP 

IMEP (kPa) 

Brake HP 

BMEP (kPa) 

At Wheels 

?? 

Exhaust 

?? 

Engine Cooling 

?? 

� FMEP is a significant fraction of the 
IMEP 

Other Engine Friction 

0.4% 

Piston Assembly 

2.8% 

(8% IMEP) 

Valve Train 

1.3% 

(3.7% IMEP) 

Bearings 

1.0% 

(2.9% IMEP) 

Seals 

0.5% 

Air Pumping 

6% 

Mode Piston FMEP Valvetrain FMEP Bearings FMEP 
Rpm/kPa 

Viscous Asperity Viscous Asperity Viscous Asperity 
(kPa) (kPa) (kPa) (kPa) (kPa) (kPa) 

1) 750/104 20.58 0.73 0 1.591 10.2 0.026 

2) 960/1683 1.52 0.01 0 0.004 1.0 0.013 

3) 1170/1683 1.75 0.012 0 0.004 1.2 0.004 

4) 1590/983 3.81 0.009 0 0.023 2.3 0.002 

5) 1590/1683 2.17 0.019 0 0.006 1.5 0.002 

6) 1800/325 12.14 0.008 0 0.025 7.2 0.000 

7) 1800/983 4.14 0.004 0 0.011 2.5 0.000 

8) 1800/1683 2.32 0.009 0 0.004 1.6 0.001 

Weighted 30.6 kPA 2.4 kPa 16.8 kPa 
Average 5% <IMEP> 0.4% <IMEP> 2.7% <IMEP> 

Aero Drag 

?? 

Tires 

?? 

8.1% of IMEP
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Ring-on-Liner: Lubricant Additive (ROL 060228) 

� 10W-30 Synthetic � Low-Friction Additive 
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