Onboard -Plasmatron Hydrogen Production

Daniel R. Cohn Massachusetts Institute of Technology

Heavy Vehicle Systems Review Argonne National Laboratory April 19, 2006

Team

MIT PLASMA SCIENCE AND FUSION CENTER

- L. Bromberg
- D.R. Cohn
- A. Rabinovich
- K Hadidi
- N. Alexeev
- A. Samokhin

MIT SLOAN AUTOMOTIVE LABORATORY

- J. Heywood
- J. Topinka
- J. Goldwitz
- G. Ziga
- N. Margarit

ARVINMERITOR

- Tier 1 US automotive and heavy truck components manufacturer
- Commercializing plasmatron technology licensed from MIT
- S. Crane, N. Khadiya, R. Smaling et. al

Plasmatron Reformer Technology

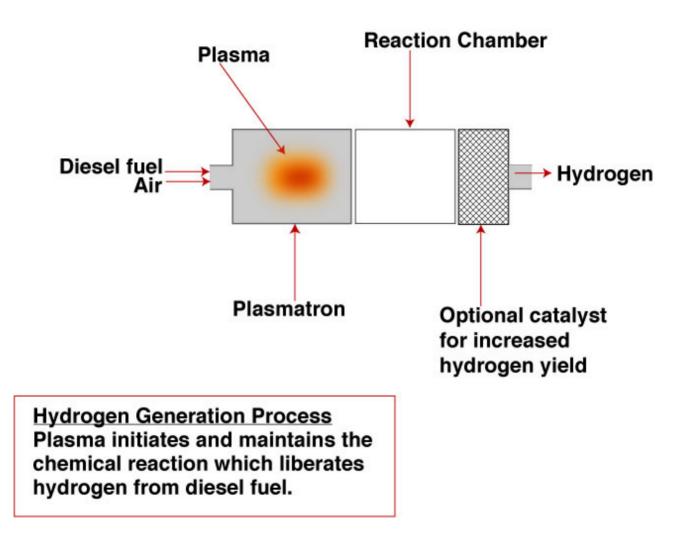
- Compact technology for production of hydrogen -rich gas
 - Special low power plasma promotes partial oxidation conversion of gasoline, diesel, bio oils, and other fuels to hydrogen-rich gas
- Advantages:
 - Fast startup and rapid response to transient conditions
 - Relaxation or elimination of reformer catalyst requirements
 - Compact
 - Efficient
 - Robust capability for onboard multi-fuel reforming (can process difficult to reform fuels, e.g. diesel, bio-oils, ethanol)

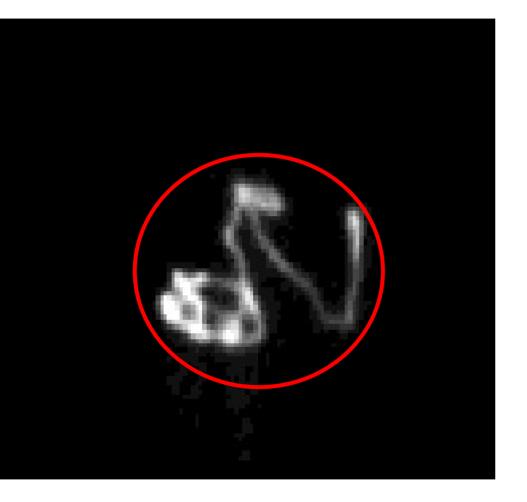
Potential Applications

- Enhanced diesel engine exhaust aftertreatment using hydrogen rich gas
 - NOx emissions reduction (regen of NOx traps, hydrogen SCR)
 - Particulate emissions reduction (regen of diesel particulate filters)
- Alternative fuel conversion to hydrogen-rich gas (bio-oils, ethanol)
- HCCI engines using diesel and other fuels
- Hydrogen enhanced spark ignition engines
 - ultra-lean operation
 - Improved efficiency
 - Further reduction of emissions

Accomplishments

- Plasmatron technology transferred to industry (ArvinMeritor) for commercialization
- DOE investment in plasmatron technology has been leveraged into a much greater development effort by industry
- Plasmatron technology was recipient of the 1999 Discover Award for Technological Innovation in Transportation (in competition with Toyota Prius hybrid vehicle)


Hydrogen-Rich Gas Production Using Partial Oxidation Reforming


• Add sufficient oxygen from air to bind all carbon in fuel as CO; for iso-octane (representative of gasoline)

C₈H₁₈ + 4 (O₂ + 3.8 N₂) --> 8 CO + 9 H₂ + 15.2 N₂

- Reaction is mildly exothermic
 - Slow reaction
 - Approx 15% of energy released in the reformation process
 - Difficult to startup and maintain under transient conditions

Plasmatron Fuel Reformer

- Plasma created in the a gas flow
- Gas flow stretches the plasma
- Plasma extinguishes and re-establishes (1 kHz)
- Discharge over a large volume

END VIEW

Low current gasoline plasmatron operating parameters

Power	W	250
Plasma current	А	0.1 - 0.4
H2 flow rate	slpm	10-200
Length	cm	40
Volume	liter	2
Weight	kg	3

Diesel Fuel Reforming

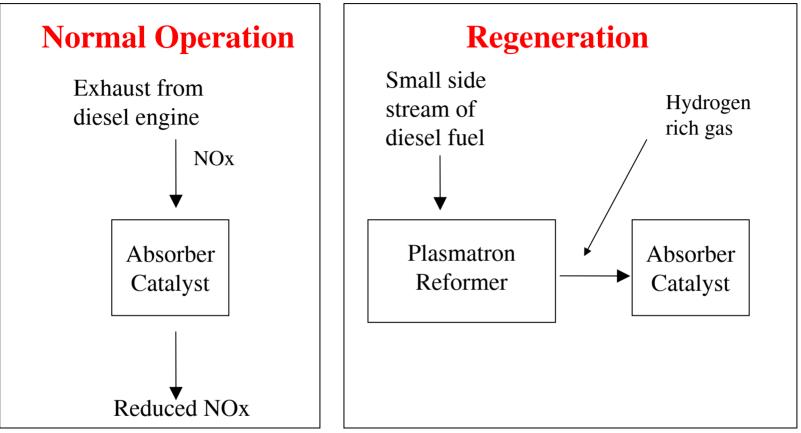
- Heavy fuels reformed into hydrogen and light hydrocarbons
 - Low oxygen content
 - Low or no soot
 - Fast turn-on
- Reformate can be further processed by catalyst
 - Absence of free oxygen minimizes hot spots
 - High hydrogen yield

Diesel reforming without catalyst

Electric power O/C	W	250 1.1
Diesel flow rate	g/s	0.8
Corresponding chemical power	kW	35
Concentration (vol %)		
H2		8.2
O2		1.4
N2		68.7
CH4		2.6
CO		14.3
CO2		4.7
C2H4		2.4
C2H2		0.0

Energy efficiency to hydrogen, CO and light HC	70%
Soot (opacity meter)	0

Plasma enhanced partial oxidation reforming


- Homogeneous (non-catalytic)
 - Conversion of liquid fuels into gaseous fuels (including hydrogen, CO, methane, ethylene)

- Plasma catalytic reforming
 - Reduced requirement catalyst can be used to further increase the hydrogen yield from homogeneous reforming

Summary of plasmatron reformer development at MIT

- Effective reformation of a wide variety of fuels: gasoline, diesel, bio-oils ,natural gas
- Fast time response/start up time
 - Virtually instantaneous with reduced yield
- Compact device
 - 2 liters for 100 kW of reformate (hydrogen rich gas)
- Electrical Energy consumption:
 - 1 3% of the combustion power of the reformate
- Wide range of operation (factor of 20 hydrogen rich gas output)

Regeneration of NOx trap

Advantages of regeneration with H₂-rich gas:

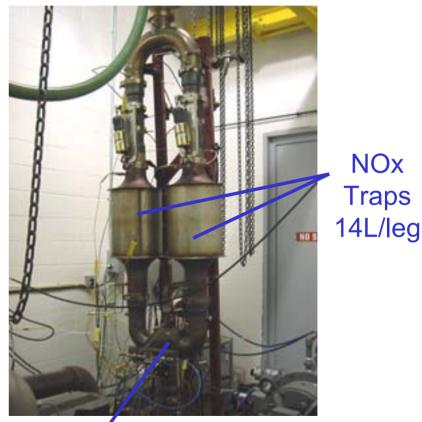
- Greater effective operating range (lower temperature)
- Reduced fuel penalty
- Reduced adverse effects of sulfur

H₂-Assisted NOx Traps: Test Cell Results Vehicle Installations

Sam Crane August 28, 2003

Gen H Fuel Reformer

- After-treatment Suitable
 - Reforms Diesel: 22% H₂
 - Low soot
- Enclosed housing
 - EMI reduced
 - Safety improvement
- New Power Supply
 - Under 250W consumption
 - Minimal heat rejected
 - Compact transformer
- High-temperature flange seals
 - Reduced leakage


H2-Assisted NOx Trap: Test Set-up

Test Cell Installation: H2-Assisted NOx Trap

Cummins 8.3L MY2000

Switching Valve

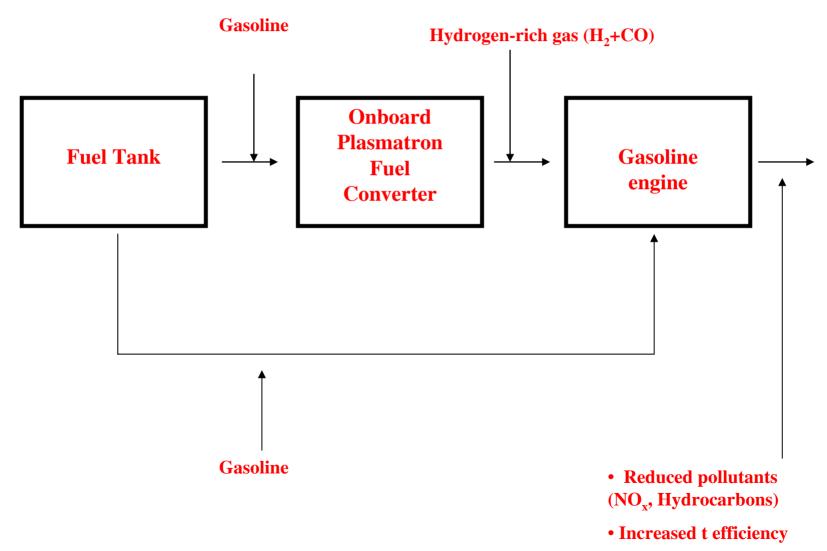
19

NOx

Traps

Bus H2-Assisted NOx Trap Installation

Fuel Reformer Box


21L/leg

Summary of Results: H2-Assisted NOx Trap

- Regeneration Fuel Penalty Reduction of roughly 50% at moderate exhaust temperatures
- Idle regenerations achieved
- Hydrocarbon slip dramatically reduced
- Dual Leg System installed and operating on a Transit Bus : 80 – 90% NOx Reduction
- Single Leg Bypass System installed and operating on an F250 Truck: 70% NOx Reduction

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. 1

High Efficiency, Low Emission Vehicle Concept

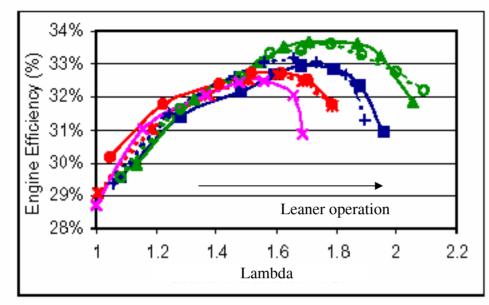


Figure 30: Engine Only Efficiency vs. VDP

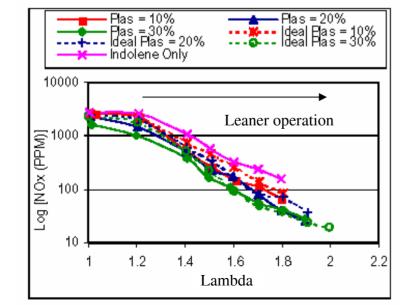
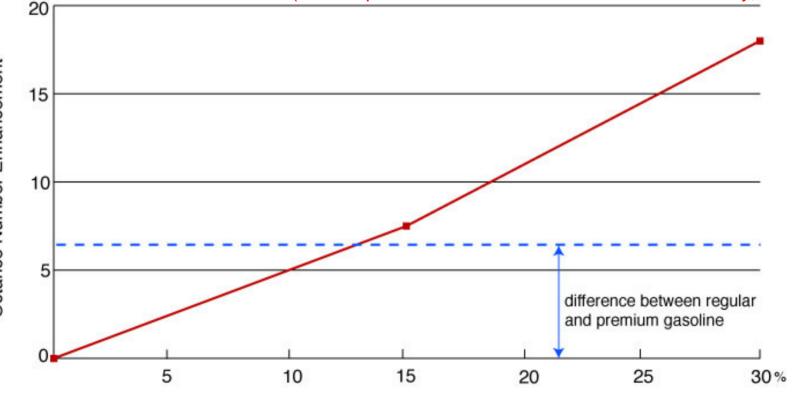


Figure 25: NOx emissions vs. Lambda

Gasoline engine testing at MIT

- Hydrogen enhanced combustion stability allows very lean burn (high air to fuel ratio) without misfire
- Naturally aspirated (no turbocharging) with conventional compression ratio
- Ultralean operation increases efficiency 15% and decreases NOx by a factor of 100

SAE-2003-01-0630


Lean burn characteristics of a gasoline engine enriched with hydrogen rich gas from a plasmatron fuel reformer

E. Tully and J.B. Heywood

MIT Dept. of Mechanical Engineering and Sloan Automobile Laboratory

Octane Enhancement from Hydrogen Addition

(From experiments at MIT Sloan Automotive Laboratory, 2003)

% of Fuel Energy from Hydrogen Gas

Octance Number Enhancement

High Compression Ratio, Highly Turbocharged Operation through Improved Knock Resistance

- MIT experiments show that knock resistance is substantially improved by moderate addition of hydrogen rich gas to gasoline (15 octane number increase)
- The combination of enhanced knock resistance and enhanced combustion stability could increase net efficiency by up to a factor of 1.3

Future Directions

- Reformer enhanced regeneration of diesel particulate filters
- Hydrogen SCR for NOx aftertreatment
- Control of HCCI engine operation
- Use with fuel cell for auxiliary power in diesel trucks
- Emission reduction and higher efficiency in spark ignition engines