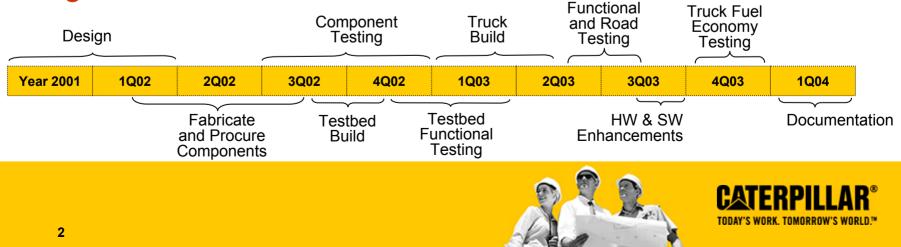
DOE Program on Parasitic Energy Loss Reduction for Class 7/8 Trucks

Heavy Vehicle Systems Optimization April 19, 2006

Program Objectives

Reduce Parasitic Losses for Fuel Savings Reduce Radiator Heat Load Provide Anti-Idling Solutions


Technical Approach

Electrify truck accessory functions and hotel type loads to improve efficiency, power management, packaging flexibility, reliability, and customer value

Fuel Savings Potential

Total fuel saving is 1550 gal/yr – 1800 gal/yr per truck U.S. Class-8 overnight-idling population of 458,000 trucks Fuel savings of 710 - 824 million gallons of diesel U.S. Economy impact of \$2 billion per year @ \$2.75/gal)

Program Plan

Modular HVAC

Variable speed compressor more

efficient and serviceable 3X more reliable compressor no belts, no valves, no hoses leak-proof refrigerant lines instant electric heat

Shore Power Converter

Supplies DC Bus Voltage from 120/240 Vac 50/60 Hz Input

Down Converter

Supplies 12 V Battery from DC Bus

Compressed Air Module Supplies compressed air for brakes and ride control Electric Water Pump

> Higher reliability variable speed faster warm-up less white smoke lower cold weather emissions

Integrated Starter Generator

Beltless engine product differentiation improve systems design flexibility more efficient & reliable accessories

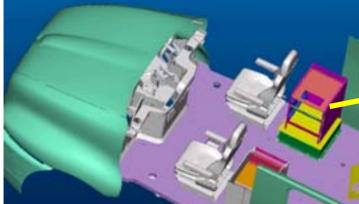
Auxiliary Power Unit

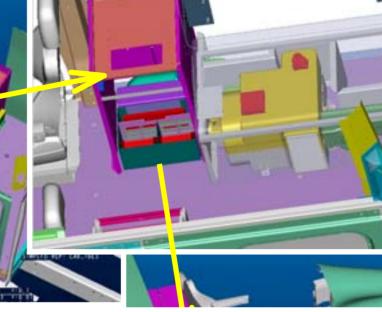
Supplies DC Bus Voltage when engine is not running - fulfills hotel loads without idling main engine overnight

Variable speed Higher efficiency

Auxiliary Power Unit (APU)

Diesel engine: 2-cylinder, 0.5 lt, 14 hp at 3,600 rpm


- Generator: 3-phase/4-pole brushless synchronous machine
- AVR control on Field Excitation powered by rotating diodes
- AC output rectified by full-bridge to produce 340 Vdc
- Electrical Efficiency 70%
- Variable Speed
- □ 4 kW @ 1,800 rpm
- □ 8 kW @ 3,600 rpm
- Electronic engine governor adjusts speed to match electrical load



Electrically Powered HVAC - CAT Development

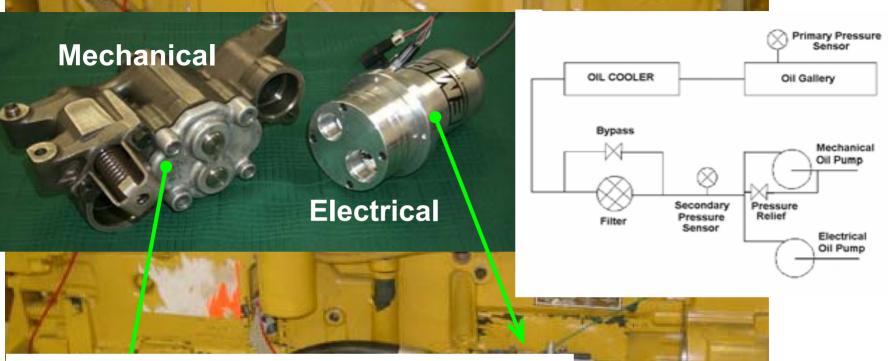
FEATURES and **BENEFITS**

Modular design

- Variable speed scroll compressor
- More efficient and serviceable
- Leak proof refrigerant lines
- ❑ 3X more reliable 10X more durable
- Supplemental electric heat

Electrically Driven Coolant Pump - with EMP

Emerson Electronics

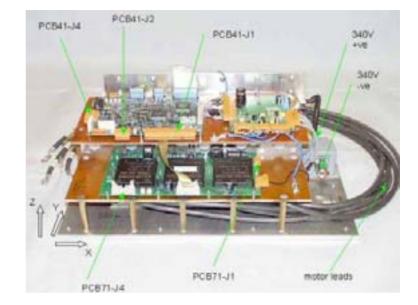

FEATURES and **BENEFITS**

- Uses more efficient pump technology
- Variable speed drive
- Faster warm-up
- More efficient cooling system
- Potential for simplified engine front-end

Dual Engine Oil Pump System - with EMP

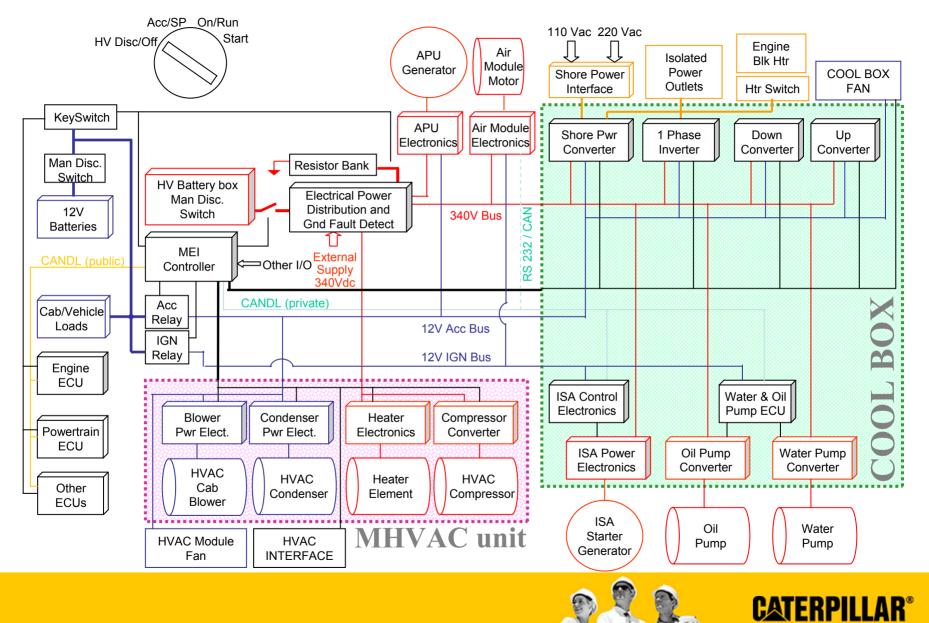
FEATURES and BENEFITS

Variable speed
Pre and Post Lube Capabilities
Maintains oil pressure below relief point
TSD focusing on control strategies



Integrated Starter Generator - CAT/SRDL Development

- Features brushless switched reluctance technology
- Electromagnetic and Power Electronic design by SRDL
- Mechanical design by CAT



- Conforms to SAE #1,2,3 housing standards for mating with multiple engines
- Output of 30 kW at 340 Vdc
- Cranking torque up to 1200 Nm

Electrical System Architecture

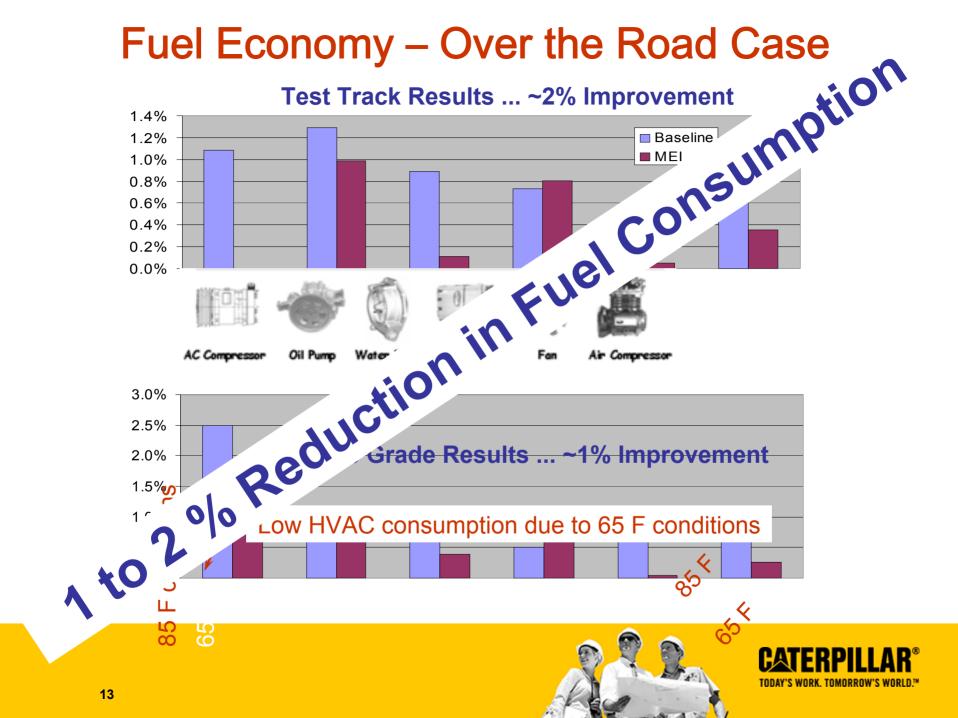

TODAY'S WORK. TOMORROW'S WORLD.™

DOE MEI On-Highway Truck

SAE Type II Truck Performance Testing

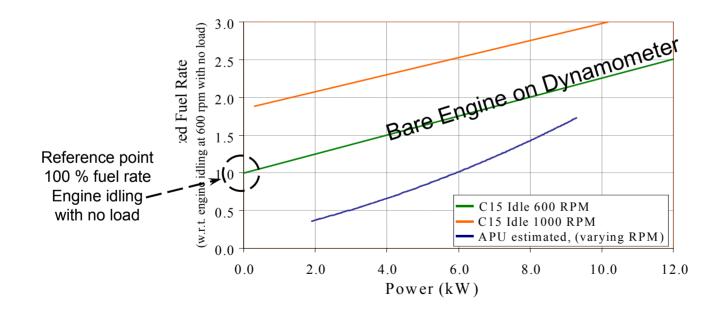
Fuel Savings Opportunity

Over the Road Case


- decoupling accessories from engine
- operating electric accessories on-demand basis
- matching power consumption to actual need

Idle Avoidance Case

- avoiding the idling of truck's main engine
- operating 1830 hours per year in stationary position
- powering accessories with auxiliary source, e.g. APU



Fuel Consumption – Truck Idling Case

	Fuel Usage							
	600 rpm			1000 rpm				
	Spring	Mild	Mild	Cold	Hot			
	& Fall	Winter	Summer	Winter	Summer			
Truck	145 %	145 %	155 %	235 %	270 %			
Idling	3.7 kWm	3.7 kWm	4.4 kWm	4.7 kWm	7.4 kWm			

Jr.

Fuel Savings Opportunity – Truck Idling Case

	Fuel Usage						
	600 rpm			1000 rpm			
	Spring & Fall	Mild Winter	Mild Summer	Cold Winter	Hot Summer		
ldling Std Truck	145 % 3.7 kWm	145 % 3.7 kWm	155 % 4.4 kWm	235 % 4.7 kWm	270 % 6 kWm		
APU 1.2 kWe	(20 %)						
APU 2.0 kWe		30%	30%				
APU 2.8 kWe				40 %	(40%)		

Seasonal Breakdown

- □ 6 months Spring/Fall
- 2 months mild Summer
- □ 2 months mild Winter
- □ 1 month cold Winter
- □ 1 month hot Summer

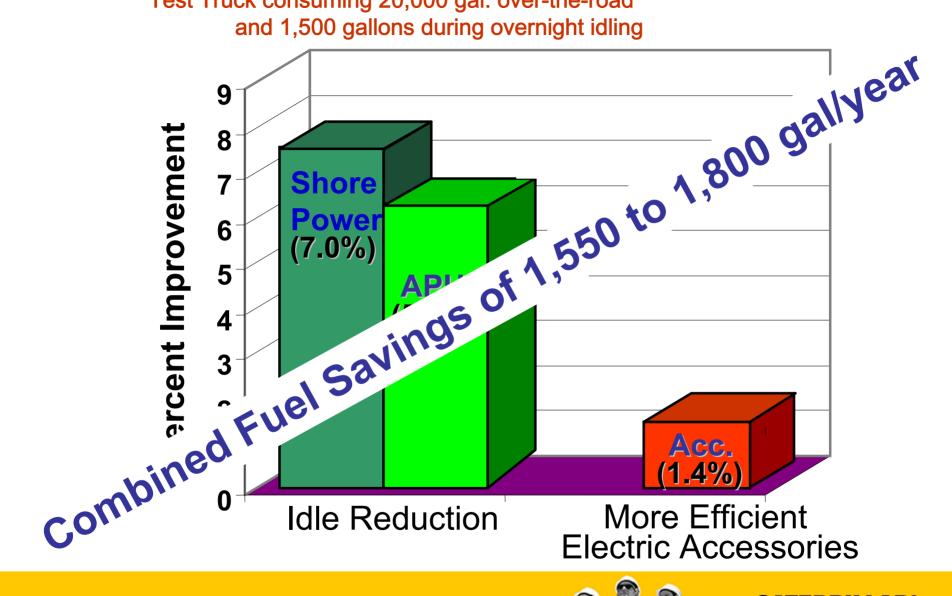
→ APU fuel rate
with HVAC off
35 Amp 12 V load

APU fuel rate with HVAC on at 95 F ambient and 45% humidity

Fuel Consumption – Truck Idling Case

Idling Scenario	Main Engine Fuel Consumed % baseline	APU Fuel Consumed % baseline	Power Load (hotel load for all conditions)	Main Eng Brake Power	APU Electric Power
6 mo Spring/Fall	145 (600 rpm)	20	HVAC Off	3.7 Kw	1.2 Kw
2 mo Mild Summer	155 (600 rpm)	30	A/C On	3.7 Kw	2.0 Kw
2 mo Mild Winter	145 (600 rpm)	30	Heater On	4.4 Kw	2.0 Kw
1 mo Cold Winter	235 (1000 rpm)	40	Heater On	4.7 Kw	2.8 Kw
1 mo Hot Summer	270 (1000 rpm)	60	A/C On	7.4 Kw	2.8 Kw

Idle Reduction Fuel Savings Opportunity


Assume truck idling for 1830 hr/yr and nominal fuel rate of 0.5 gal/hr (100% rate)

- □ Conventional Truck consumes 1500 gal/year
- □ More Electric Truck with APU consumes 250 gal/yr
- □ APU yields fuel savings opportunity of 1250 gal/yr
- □ Shore Power fuel savings opportunity is 1500 gal/yr

Fuel Economy Improvements for Case Study with Test Truck consuming 20,000 gal. over-the-road and 1,500 gallons during overnight idling

Summary and Conclusions

Several high power electric accessories were demonstrated

- Starter/Generator and Battery Charger
- Coolant and Engine Oil Pumps
- Heating and Air Conditioning System
- Auxiliary Power Unit
- Developed architecture & control system
- □ Over the road fuel economy gains of 1 2% est.
- Difficulty accurately measuring over the road fuel savings with 1 truck
- Better methodology would be to measure a group of trucks over a period of time

Summary and Conclusions

□ Shore power or APU's yield savings in fuel consumption

- Dependent on actual usage
- Truck idling reductions yields significant fuel savings
- □ 5.8 7.0 % of total yearly fuel usage
- □ Total fuel saving is 1550 gal/yr 1800 gal/yr per truck
- U.S. Class-8 overnight-idling population of 458,000 trucks
- □ Fuel savings of 710 824 million gallons of diesel
- □ U.S. Economy impact of \$2 billion per year @ \$2.75/gal)

Questions ???

Modular HVAC

Variable speed compressor more efficient and serviceable

3X more reliable compressor no belts, no valves, no hoses leak-proof refrigerant lines instant electric heat

Shore Power Converter

Supplies DC Bus Voltage from 120/240 Vac 50/60 Hz Input

Integrated Starter Generator

Beltless engine product differentiation improve systems design flexibility more efficient & reliable accessories

Auxiliary Power Unit

Supplies DC Bus Voltage when engine is not running - fulfills hotel loads without idling main engine overnight

Down Converter

Supplies 12 V Battery from DC Bus

Compressed Air Module Supplies compressed air for brakes and ride control

Electric Water Pump

Higher reliability variable speed faster warm-up less white smoke lower cold weather emissions

Variable speed Higher efficiency

