Fuel Cell Auxiliary Power Units: The Future of Idling Alternatives?

Christie-Joy Brodrick, Ph.D Institute of Transportation Studies University of California at Davis

> Albany, NY May 17-19, 2004

Truck – APU Demonstrations

Just Kidding

Presentation Outline

- Brief Introduction to Fuel Cells
- State of Truck FC APUs
- Challenges
- Projected Emissions and Fuel Benefits
- Projected Markets and Economics

Fuel Cells

Operation

- Convert chemical energy to electrical energy
- Operate like battery, but use external fuel
- Variety of different types: PEM, SOFC...

ox hu

in 1839, William Grove, a British jurist and amateur physidst, first discovered the principle of the buelced. Grove utilized four large cels, each containing hydrogen and oxygen, to produce electric power which was then used to split the vater in the smaller upper sell hick hydrogen and oxygen.

<u>History</u>

- 1839: William Grove succeeds to reverse water electrolysis
- Late 1950s: NASA funds over 200 research contracts for fuel cell technology
- 1990: Fuel cells experience an intense phase of research

Truck FC APU Prototypes

Examples....

- Freightliner/Ballard
- SwRI
- UC Davis
- GM
- Delphi
- Cummins

Challenges

- Cost
- Size
- Durability
- Lifespan
- Fuel compatibility

Solid State Energy Conversion Alliance Progressive Applications

- \$800/kilowatt
- Prototypes: 3 10 kilowatts
- Six industrial teams:
 - -Delphi
 - -Cummins/McDermott
 - -General Electric
 - -Siemens Westinghouse Power Corp.
 - -Acumentrics
 - -FuelCell Energy

<mark>201</mark>0

- \$400/kilowatt
 - Commercial applications

- FutureGen Plants
 - 70-80% efficient
 - Generate electricity and hydrogen
 - Sequester greenhouse gases
 - Operable on gasified coal
- Transportation
 - <\$200/kW

Models: Engineering and Economics

Fuel Savings Projections

	Idling engine		SOFC APU (without idling)		
Accessory load (engine speed)	Diesel consumption (gal/hr)	Average Efficiency	Diesel consumption (gal/hr)	Average Efficiency	
"typical" (600 rpm)	(typical" 600 rpm) 0.53 10% (typical" 900 rpm) 0.95 9%		0.14 (0.10 - 0.16)	32% (26 - 38%)	
"typical" (900 rpm)			0.14 (0.10 - 0.16)	32% (26 - 38%)	
"high" (1200 rpm)	1.25	10%	0.17 (0.14 - 0.21)	33% (26 - 39%)	

NOTES: Idling efficiency measured at engine, not at accessory / end-use;

"Typical" accessory cycle: average 2 kW, max 3.7 kW; "High" load: average 2.7 kW, max 4.7 kW;

()'s denote 20% error bars in efficiency curve

→ 74 – 86% idled fuel savings with Solid Oxide Fuel Cell

→ Potential fuel savings 3-8% of total vehicle energy use for truck.

Emissions Savings Data

Condition	NO _x		Fuel Economy		
	g/hr	st. dev.	gal/hr	st. dev.	
Idling without accessories on	103	14	0.36	0.03	
Idling at 600 rpm with a/c	166	5	0.52	0.04	
Idling at 1050 rpm with a/c	254	NA	0.88	NA	
Long idling at 1050 rpm with a/c	225	NA	0.93	NA	
Cruise at 55 mph	713	41	5.92	0.14	

 \rightarrow NOx emissions at idle can be ~1/3 of emissions at 55 mph.

Emissions Savings Projections

NO₂ emissions and CO₂ greenhouse gas savings potential from eliminating truck idling

	Low emissions estimate		High emissions estimate		
	NO _x	CO2	NO_x	CO2	
Scenario 1: average idle time (1818 hours per year)					
Baseline idle emissions (grams per hour)	104	4034	396	29687	
Hours per day idle	6	6	6	6	
Days per year idle	303	303	303	303	
Emissions at idle (grams per year)	189,072	7,333,812	719,928	53,970,966	
Tons per year per vehicle	0.208	8.08	0.793	59.5	
Scenario 2: 40% idle time (2424 hours per year)					
Baseline idle NO _x emissions (grams per hour)	104	4034	396	29687	
Hours per day idle	8	8	8	8	
Days per year idle	303	303	303	303	
Emissions at idle (grams per year)	2.52,096	9,778,415	959,904	71,961,288	
Tons per year per vehicle	0.278	10.8	1.06	79.3	

\$\$\$: Economic Analysis of APUs

Sensitivity to Assumptions of Cost of Idling Alternative

		Parameter		Payback periods for				
		i arameter			varied parameters (yrs)			
		(unit)	Low	Middle	High	Low	Middle	High
	Annual Vehicle Idling	(hrs.)	1818	2121	2424	2.8	3.2	3.8
Diesel	Idling diesel consumption	(gal/hr)	0.6	1	2.25	1.3	3.2	6.5
	Diesel fuel cost	(\$/gal)	1.35	1.51	1.7	2.8	3.2	3.7
	Lubricant cost	(\$/hr idled)	-	0.07	-	-	3.2	-
	Engine overhaul cost	(\$/hr idled)	-	0.07	-	-	3.2	-
Fuel cell	Fuel cell capital cost	(\$/kW)	1000	2000	3000	2.8	3.2	3.7
	H2 fuel tank cost	(\$)	700	1100	1800	3.0	3.2	3.5
	H ₂ fuel cost	(\$/GJ(HHV))	11	25	40	2.8	3.2	3.8
	Idling H ₂ consumption	(GJ/hr)	-	0.013	-	-	3.2	-
	Fuel cell installation cost	(\$)	-	1500	-	-	3.2	-
	Fuel cell O & M cost	(\$/hr idled)	-	0.05	-	-	3.2	-
	Heater and air conditioner cost	(\$)	-	1800	-	-	3.2	-
	Plumbing and wiring cost	(\$)	-	250	-	-	3.2	-
	Trace inverter	(\$)	-	1300	-	-	3.2	-
Market	Inflation (labor, overhaul)		-	3%	-	-	3.2	-
	Inflation (diesel)		-5%	5%	15%	2.6	3.2	4.5
	Inflation (H2)		-	3%	-	-	3.2	-
	Discount rate		-	10%	-	-	3.2	-
14						(Brodric	k et al., 200	(2)

Economic Analysis of APUs

Sensitivity Analysis for Fuel Cell APU on Truck

(example from hydrogen fuel cell APU analysis)

Payback period is very sensitive to idling fuel consumption of the truck

(Brodrick et al., 2002)

Market Analysis

Average savings with fuel cell APU: ~1,400 gallons/truck-yr 90th percentile savings with fuel cell APU : ~2,500 gal/truck-yr 95th percentile savings with fuel cell APU : ~3,000 gal/truck-yr

Market Analysis, Con't.

Equipping the ~9% of line-haul trucks that idle the longest with fuel cell APUs could achieve ~25% savings of idled diesel

Market Analysis, Con't.

For a given fuel cell cost, how big is the potential fuel cell APU market for trucks?

Notes: Based on 500,000 line-haul trucks; Assumed fuel cell-associated costs - \$1000 inverter, \$2000 heat pump, \$500 miscellaneous, \$1200 installation labor

The U.S. DOE target for SOFC R&D efforts is \$400/kW for 2011 timeframe

Market Size for 2 Yr. Payback Times

Calculating payback period on a fuel cell APU investment with high, mid, and low estimates on key economic parameters (assuming DOE 2011 target of \$400/kW).

With ~500,000 line-haul trucks, 4-12%, or 20,000 to 50,000 trucks, could have payback times of less than 2 years for fuel cell APUs

References

- Brodrick, C. J., M. Farshchi, H.A. Dwyer, S.W. Gouse III, M. Mayenburg, and J. Martin, 2000. "Demonstration of a Proton Exchange Membrane Fuel Cell as an Auxiliary Power Source for Heavy Trucks." *Society of Automotive Engineers Technical Paper Series*. 2000-01-3488.
- Brodrick, C. J., N.P. Lutsey, Q.A. Keen, D.I. Rubins, J.P. Wallace, H.A. Dwyer, D. Sperling, D., and S.W. Gouse III., 2001. "Truck Idling Trends: Results of a Northern California Pilot Study." Society of Automotive Engineers Technical Paper Series. 2001-01-2828.
- Brodrick, C.J., M. Farshchi, H.A. Dwyer, D.B. Harris, F.G. King, Jr., 2002a. "Gaseous Emissions from Idling of Heavy-Duty Diesel Truck Engines" *Journal of the Air & Waste Management Association*. 52: 174-185. September.
- Brodrick, C.J., T. Lipman, M. Farshchi, N. Lutsey, H.A. Dwyer, D. Sperling, S.W. Gouse III., B. Harris, and F. King Jr, 2002b. "Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks." *Transportation Research, Part D.* 7: pp. 303-315.
- Lutsey, Nicholas, Christie-Joy Brodrick, Daniel Sperling, Harry A. Dwyer, 2002.
 "Markets for Fuel Cell Auxiliary Power Units in Vehicles: A Preliminary Assessment." Transportation Research Board Annual Conference Proceedings.
- Thijssen, J. and M. Stratanova. *Solid Oxide Fuel Cell Model.* TIAX LLC. Personal communication

