

#### ... for a brighter future

# Fabrication of Small Diesel Fuel Injector Orifices

George Fenske Argonne National Laboratory

Sponsored by Jerry Gibbs Propulsion Materials

DOE VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW February 25th, 2008

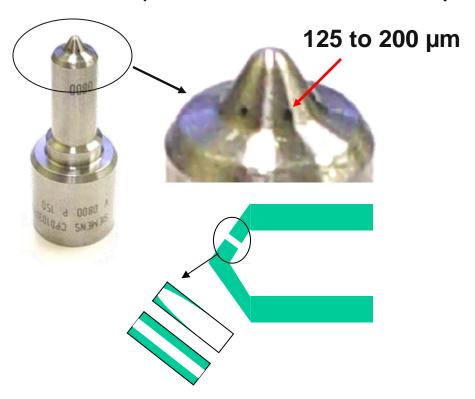


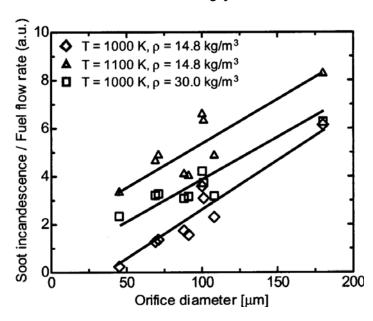
UChicago ► Argonne<sub>uc</sub>

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

"This presentation does not contain any proprietary or confidential information"




#### **Outline**


- Purpose of work
- Address Previous Review Comments (if applicable)
  - -N/A
- Barriers
- Approach
- Performance Measures and Accomplishments
- Technology Transfer
- Publications/Patents
- Plans for Next Fiscal Year
- Summary



### **Purpose of Work**

- Develop technologies to fabricate 50 µm diameter (or less) microorifices for high-pressure diesel injectors
  - Reduce in-cylinder production of particulates (lower emissions)
    - with no fuel economy penalty
  - Improve combustion of fuel (improved fuel efficiency)





Pickett & Siebers, JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME 127 (1): 187-196 JAN 2005



#### **Barriers**

- Vehicle Technologies Barriers (MultiYear Program Plan):
  - Energy Efficiency ..."maintaining efficiency and low NOX while keeping PM down..."
    - Emission compliant engine systems with 50% efficiency by 2010, stretch goal of 55% thermal efficiency in prototype engines.
  - Emission Control "Meeting EPA requirements for oxides of nitrogen and particulate matter emissions standards with little or no fuel economy penalty will be a key factor for market entry of advanced combustion engines"; ....." The fuel injection system pressure and fuel spray development influence the spray penetration and fuel-air mixing processes and thus combustion and emissions formation within the combustion chamber...."
- Multiple paths being pursued to reduce emissions
  - Aftertreatment devices (NOx & PM traps)
  - Alternative engine cycles (HCCI, LTC)
  - Improved fuel injector designs fuel atomization (in-cylinder reduction of particulates)
- DOE Workshop "RESEARCH NEEDS RELATED TO FUEL INJECTION SYSTEMS IN CIDI AND SIDI ENGINES" identified specific needs:
  - Manufacturing technologies that would be used for cost-effectively producing ultra-small holes and controlling dimensions with ultra precision.
  - Materials and coatings to resist fatigue, wear, and corrosion; sensors and controls; non-traditional fuel injection; modeling & simulation, ...



## **Approach**

- Identify potential micro-orifice fabrication techniques
  - No technology exists to economically produce robust 50 µm orifices
- Downselect 50 μm, maturity, cost, scaleup
- Demonstrate feasibility (lab)
- Identify and resolve technical barriers
  - Uniformity, adhesion, deposit formation, hardness, fatigue, reduced flow ...
- Treat prototypic components (Tech Transfer)
- Spray visualization studies
- Engine emission & efficiency studies

Electrodischarge (current process), Plating (aqueous, CVD/PVD), Laser-processing, LIGA, ...

▼ Electroless Nickel – autocatalytic deposition of Ni from aqueous solution











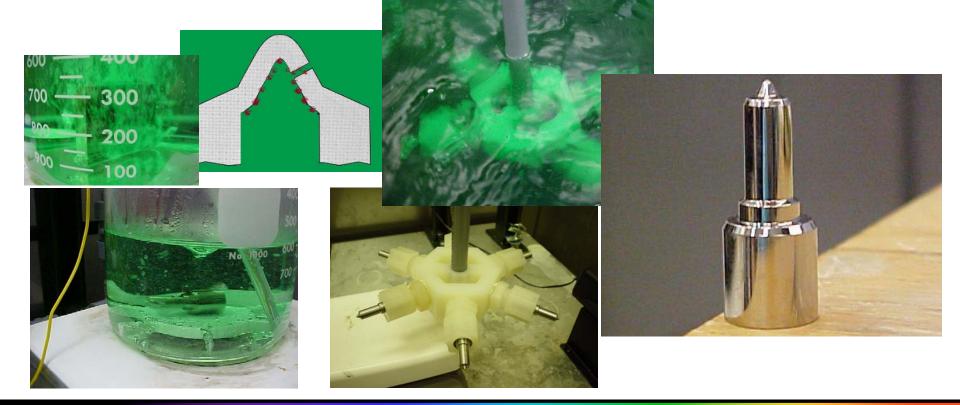


**USEPA NVFEL** 





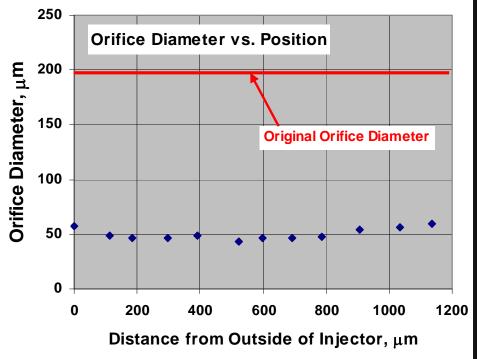


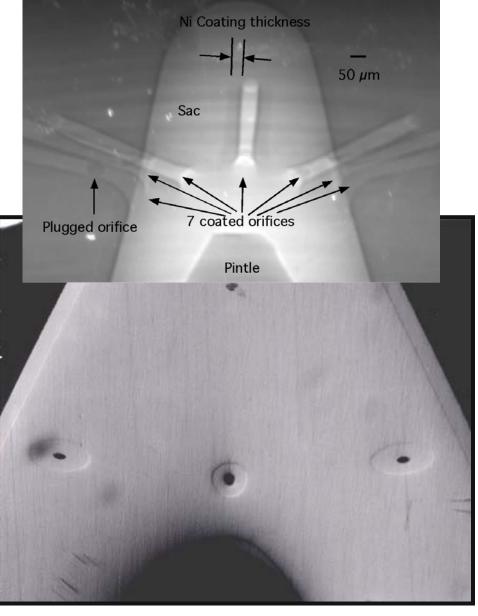

### **Demonstrate Feasibility**

Release of hydrogen during autocatalytic deposition impaired uniformity.

Multiple electroless nickel (EN) approaches were investigated in a lab setting to mitigate buildup of hydrogen bubbles on internal surfaces.

Beaker, beaker & magnetic stirring, pump-through, spin-through,

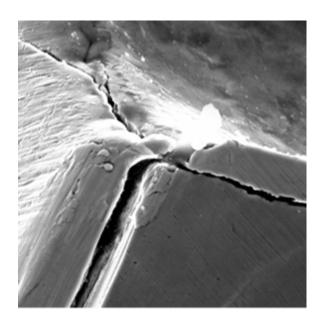

ultrasonic agitation

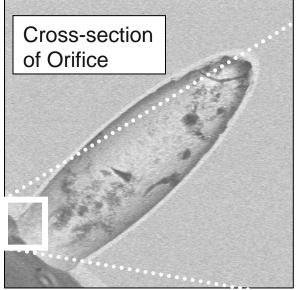


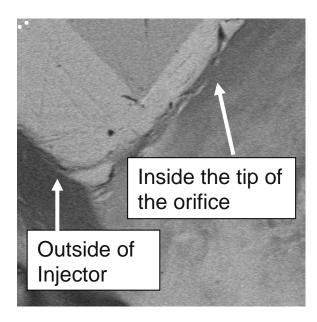



# **Coating Uniformity**

Metallography and phase-contrast X-Ray imaging (NDE) of EN - coated nozzles provide quantitative information on coating uniformity

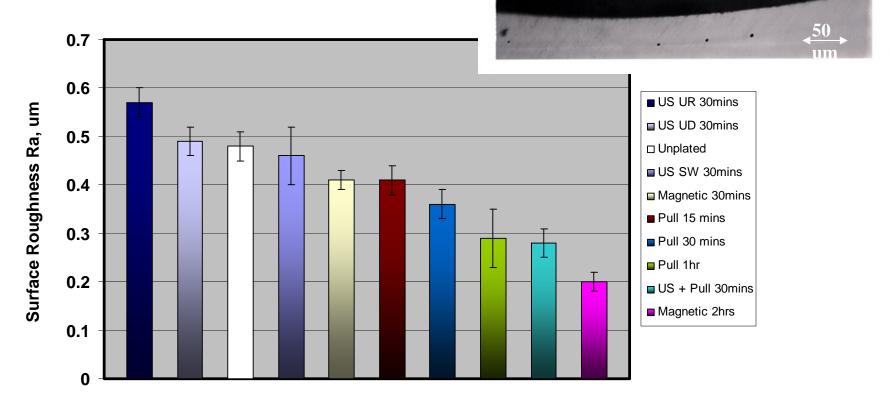



### Adhesion

 Initial adhesion issues were addressed and resolved with proper control of precleaning/etching, control of solution chemistry, and post-deposition annealing

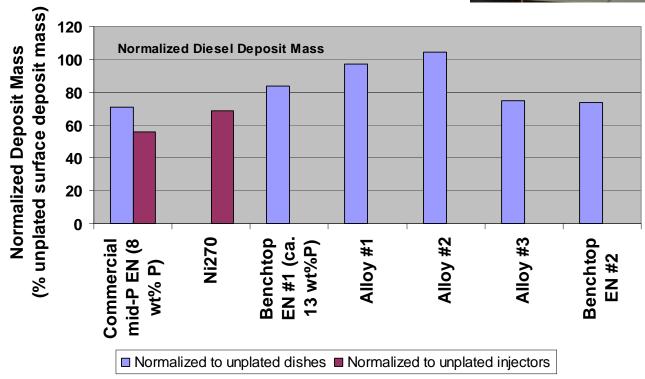







#### Surface Finish

- Roughness measurements of the internal orifice surface indicate EN process 'levels' surface asperities
  - Increase Cd for individual micro-orificesimproved flow properties






### **Deposit Formation**

- Smaller orifices are more prone to plugging due to the formation of deposits
- Lab tests demonstrate EN coatings (Ni-P) are less prone to deposit formation

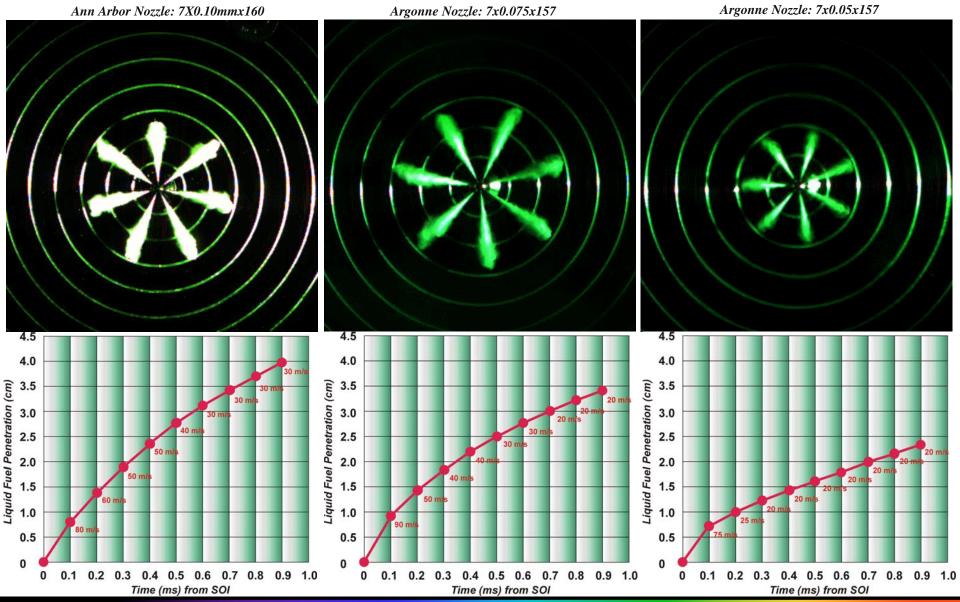






### Scale-Up/Tech Transfer

- Efforts initiated to transfer coating concept to a commercial coating firm
  - Access to experience and knowledgebase that a commercial firm can provide to address adhesion, hardness, hydrogen-buildup and coating of small orifices.
  - Experience in design and costing of systems for production.
  - Issues related to small-batch and dayto-day variations minimized.
- Collaborative efforts engine and fuel injector manufacturers
  - Fuel atomization, deposit formation, ....
- Collaborative efforts with USEPA flow visualization studies






### Flow Visualization

### Courtesy - Ron Schaefer, USEPA/NVFEL





#### Future Plans

- EN Plating
  - Flow visualization studies
    - USEPA NVFEL
    - X-ray imaging (APS)
  - Multi-Size Orifices
- Engine Emission Studies
- Industry durability, cavitation
- Alternative Micro-Orifice Fabrication
  - Nickel Vapor Deposition
  - Laser Micro-Drilling







#### Publications & Patents/Inventions

#### Publications

- Fenske, G., "Fabrication of Micro-Orifices for Diesel Fuel Injectors," 2007 Annual Progress Report, Automotive Propulsion Materials, U.S. Department of Energy, Washington, D.C., 2008.
- Woodford, J. B., and Fenske, G. R., "Fabrication of Small-Orifice Fuel Injectors for Diesel Engines," Argonne National Laboratory report ANL-05/06, Argonne, IL, 2005
- George Fenske, John Woodford, Jin Wang, Ronald Schaefer and Fakhri Hamady, "Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors", 2008 SAE International Powertrains, Fuels and Lubricants Congress, Shanghai, China; Jun 23-25, 2008
- Annual Report of Laboratory-Directed Research and Development Program Activities for FY 2006
- Annual Report of Laboratory-Directed Research and Development Program Activities for FY 2007

#### Patents/Inventions

- ANL-IN-02-048 Electroless Nickel Plating to produce micro-orifices
- ANL-IN-03-089 Electroless plating to produce chemically active surfaces
- ANL-IN-06-030 Nickel Vapor Deposition Orifice Coatings



### **Summary**

- Based on studies that demonstrated significant reductions in soot production with decreasing orifice diameter, efforts were initiated to identify and develop processes to fabricate micro-orifices on commercial nozzles.
  - Improved fuel atomization reduces soot/particulate formation and improves air entrainment thereby improving combustion efficiency
- Multiple approaches were examined early in the project with a down selection to EN
- Demonstrated the EN process for fabricating micro-orifices on commercial fuel injectors.
  - EN process was applied to produce 50 μm diameter orifices on multi-orificed commercial nozzles (with original orifices ranging from 125 to 200 μm)
  - Process that can be incorporated into existing nozzle designs
- Worked with industry, technical barriers were identified and resolved (uniformity, adhesion, hardness)
- Internal LDRD funding supported development of advanced x-ray imaging techniques for NDE characterization of coating uniformity and orifice blockage
- Spray visualization studies in collaboration with the USEPA demonstrated:
  - Smaller orifices resulted in shorter liquid penetration length and an appreciably shorter spray core length.
  - Smaller orifices enhanced atomization.
- Efforts in FY08 to focus on spray visualization studies of multi-sized orifices
- Future efforts to focus on engine emission studies



# **Questions** ???

