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Overview
Timeline

• Project provides fundamental 
research to support DOE/Industry 
advanced engine projects.

• Project directions and continuation 
are evaluated annually.

Budget
• Project funded by DOE/VT:

FY08 – $695k
FY09 – $700k

Barriers
• Extend HCCI (LTC) operating range 

to higher loads.
• Improved understanding of in-cylinder  

processes.
• Control HC & CO emiss. at low loads.

Partners / Collaborators
• Project Lead:  Sandia ⇒ John E. Dec
• Part of Advanced Engine Combustion 

(AEC) working group:
– 15 Industrial partners: auto, engine & energy
– 5 National Labs & Univ. of Wisconsin

• GM – bimonthly meetings & discussion
• Chevron – funds complementary project
• LLNL – 1) support kinetic-mechanism 

devel., 2) CFD modeling, & 3) cooperative 
project on detailed exhaust speciation.
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Objectives

FY09 Objectives:
• Determine the development of natural thermal stratification in an HCCI 

engine, using planar-imaging thermometry.
– Thermal-imaging diagnostic developed as part of this task.

• Evaluate the potential of intake boost for extending the high-load limit of 
HCCI by using EGR to control combst.-phasing advance – multi-year task.
– FY09:  Determine potential of boost with EGR for gasoline at rep. engine speed.  

• Determine the performance of ethanol as a fuel for HCCI engines.
– Conducted cooperatively with M. Sjöberg in the Advanced SI-Engine Fuels Lab.

• Support CFD modeling and the development/improvement of chemical-
kinetic mechanisms for HCCI at LLNL ⇒ provide data and analysis. 

Project objective:  to provide the fundamental understanding 
(science-base) required to overcome the technical barriers to the 
development of practical HCCI and HCCI-like engines by industry.



4

Milestones
FY2008

• Complete analysis of detailed exhaust-gas speciation measurements for 
iso-octane.  (February 2008) – Status:  Completed

• Determine the potential benefits of EGR for reducing the maximum 
pressure-rise rate and extending the high-load HCCI limit.  (August 2008) 
– Status:  Completed

FY2009

• Determine the magnitude and distribution of the natural thermal 
stratification in an HCCI engine at a typical operating condition. 
(February 2009) – Status:  Completed. 

• Determine the potential of EGR for increasing the allowable intake-
pressure boost for gasoline-like fuels, at a representative engine speed. 
(August 2009) – Status:  ~60% complete as of March 2009.
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Approach

• Metal engine ⇒ design well-characterized experiments to isolate specific 
aspects of HCCI/SCCI combustion & relationships between parameters.
– Intake boost:  Systematically increase boost ⇒ adjust Tin and/or EGR to retard 

timing to allow max. fueling at each Pin without knock, but with good stability. 

• Optical engine ⇒ detailed investigations of in-cylinder processes.
– Thermal stratification (TS):  Develop temperature-imaging diagnostic ⇒ Apply to 

obtain T-map images showing temporal and spatial development of TS.  

• Computational Modeling ⇒ supplement experiments by showing cause-
and-effect relationships that are not easily measured. 
– Initiating LES modeling with J. Oefelein, Sandia to understand mechanism of TS.
– In-house CHEMKIN (Senkin) single- and multi-zone kinetic modeling.
– Collaborate with LLNL to improve kinetic mechanisms, and on CFD modeling. 

• Combination of techniques provides a more complete understanding.

• Transfer results to industry.

• Use a combination of metal- and optical-engine experiments and modeling 
to build a comprehensive understanding of HCCI processes.
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All-Metal 
Engine

Optical 
Engine

Optics Table

Dynamometer

Intake Plenum

Exhaust Plenum

Water & Oil 
Pumps & 
Heaters

Flame 
Arrestor

Sandia HCCI / SCCI Engine Laboratory

• Matching all-metal & optical HCCI research engines.
– Single-cylinder conversion from Cummins B-series diesel.

Optical Engine
All-Metal Engine

• Bore x Stroke = 102 x 120 mm 
• 0.98 liters, CR=14
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Accomplishments
• Determined the evolution of natural thermal stratification in an HCCI engine, 

including its distribution and magnitude at a typical operating condition. 
– Developed a planar temp.-imaging diagnostic for TS in HCCI engines. 

• Conducted initial investigation showing the potential of intake boost for 
extending the high-load limit of HCCI for gasoline fuel.
– Showed that EGR is effective for controlling boost-induced timing advance.
– Achieved a substantial load increase at a rep. 1200 rpm operating condition.

• Determined the behavior of ethanol as an HCCI fuel over a range of 
operating conditions.
– Cooperatively with M. Sjöberg of the Advanced SI-Engine Fuels Lab.

• Initiated detailed exhaust-speciation analysis for PRF80 ⇒ 2-stage ignition.
– Project conducted in cooperation L. Davisson at LLNL.

• Supported chemical-kinetic and CFD modeling work at LLNL.
– Provided data and analysis for:  1) improving chemical-kinetic mechanisms, and

2) CFD modeling of fuel stratification to improve low-load comb. eff. & emissions.
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Importance of Thermal Stratification (TS)
• TS causes autoignition to occur 

sequentially from hottest region to coldest.
– Reduces max. pressure-rise rate (PRR).
– Allows higher fueling without knock.

• Amplify the benefit of the TS by retarding 
combst. timing ⇒ further increases in load.

• Chemilum. images show:
– Non-uniformities over whole field of view.
– Hot reactions start intermittently near the 

mid-plane.
– At time of max. PRR most combustion is 

from bulk gases (central region).
– BL combust. occurs after max. PRR.

• TS of the bulk gas is critical for high-
load HCCI operation.

• Understanding TS is important for 
increasing the high-load limit of HCCI.
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Planar Imaging Thermometry
• Diagnostic:  single-laser toluene PLIF.

– PLIF intensity varies with temperature.
– Good sensitivity in desired range, 600 – 1050 K.

• PLIF setup:
– 2% toluene + 98% iso-octane
– Laser excitation:  266 nm, 58 mm wide sheet.
– Intensified camera with 277nm LP & UG5 filters.
– Run inert with N2 to prevent quenching.
⇒ OK since TS develops prior to combustion.

• Calibrate temp. sensitivity in-cylinder.

• For well-mixed fueling, variations in PLIF 
intensity correspond to temp. variation
– Temperature fluctuations shown relative 

to the mean of each image.
– Bright regions in raw image correspond to 

cold pockets.

Nd:YAG
266 nm

Raw
PLIF

T-map
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• Laser elevation adjusted with crank angle 
to remain in mid-plane (20 - 4 mm below F-D).
– Representative of bulk gas.

• TS develops progressively as cold 
pockets convected into central region.
– Temperature nearly uniform at 305°CA.

> Virtually no TS remains from intake.
> Insufficient time with Tgas > Twall.

– Substantial TS by TDC (360°CA) +/- 35 K.
> Sufficient for significant spread in 

autoignition time of various regions.

• TS distribution is random cycle-to-cycle.

• Scale of cold pockets near TDC is 5–11 
mm, similar to 8mm TDC clearance height.
(Fine-grain speckle pattern is shot noise.)

• Magnitude of TS appears to 
diminish after TDC.

Temporal Evolution of TS

340°CA305°CA 330°CA

360°CA350°CA 355°CA

365°CA 370°CA 380°CA

390°CA

TDC
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• Apply probability density functions (PDF) 
to quantify changes in temp. distribution 
with crank angle.
– 305°CA: PDF very narrow.

> Little time for development of TS.
> Analysis ⇒ almost all width is shot noise.

– 330 - 340°CA:  Significant broadening.
– 340 - 360°CA:  Progressive increase.
– 360 - 390°CA:  PDF width decreases, in 

agreement with images. ⇒ cause?

• Define:  thermal width (TW) = 5 -95% of 
PDF width.
– Max. TW at TDC ≈ 50 K ⇒ agrees with 

multi-zone model results.  

• Normalize by TMEAN to remove effects of 
compression & expansion.
– Reduces, but not eliminate TW decrs. ATDC.

PDF Analysis of TS Images
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• Heat transfer dominant ⇒ changes at TDC.
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Thermal Distribution of Boundary Layer (BL)
• Incrementally scan laser from mid-plane 

to outer BL (to 0.8 mm below firedeck).

• 330°CA:  bulk-gas temp. is nearly uniform. 
⇒ Significant TS only for z/h ≥ -0.43.

• 360°CA:  TS developed throughout bulk gas. 
⇒ TS greater in outer BL, z/h ≥ -0.5.

• Avg. T profiles also show deficits for these z/h.

mid-plane 330°CA

z/h = -1 z/h = -0.76 z/h = -0.54

z/h = -0.22 z/h = -0.09z/h = -0.43

360°CA

z/h = -1 z/h = -0.75 z/h = -0.5

z/h = -0.25 z/h = -0.2z/h = -0.38
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• TS progresses inward from wall, 330°→360°
• Most BL temp. deficit occurs in last 0.8 mm 

at the wall ⇒ drops to Twall ≈ 400 K.

• BL thickness based on a 5% deficit from 
centerline value 
⇒ 1-1.5mm.

• Agrees with 
previous chemilum. 
& PLIF studies. 
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• Investigate the potential of boosting for 
extending HCCI to higher-loads. 
– Required to match full-load diesel or SI.

• Current work:  gasoline, 1200 rpm.

• Boost enhances autoignition ⇒
advances comb. timing ⇒ Knock!
– Compensate with reduced Tin.
– For Pin > 160 kPa, Tin → Tamb
⇒ limits allowable fueling.

• Add cooled EGR to further slow autoignition.

Intake Boost for Extending High-Load Limit

Increase Fueling
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At Max. IMEPg• Achieved IMEPg = 16.3 bar, Pin = 324 kPa. 
– Very high IMEPg for HCCI/LTC, convent’l fuel.
– Near stoich., C/F = 38.5, EGR = 60%, 

Pexhaust = 326 kPa, Texhaust = 407°C.

• Ringing ≤ 5 MW/m2, No Knocking.

• Std-Dev of IMEPg ≤ 1%, very good stability.
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• NOx emissions below US-2010 stds.
(should also meet tier II, bin 5).
– Extremely low for all boosted cases 

( < 0.1 g/kg-fuel, ~1-2 ppm).

• Correlates with low peak charge temp.
– NOx higher for Pin = 100, Tpeak > 1900K.

For maximum IMEPg at each boost
• Indicated Thermal Eff. increases 

slightly with boost. ⇒ Th. Eff. ~45%.

• Combustion Eff. increases, 97→ 99%.
– Higher wall temps. ⇒ improve combst.
– Increased EGR reduces HC & CO emiss.

Efficiency and NOx for Boosted High-Load
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• For max. IMEPg =16.3 bar, Pin =3.2 bar.
– Ind. Thermal Eff. = 47%
– Comb. Eff. =  99%
– NOx = 0.015 g/kg-fuel, Tpeak = 1750 K.
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• Ethanol is a component in most pump gasoline (0 – 15% fraction).
– Also being considered as an alternative fuel at levels up to 85%. 

• Important to understand ethanol’s potential for HCCI.
– Ignition quality ⇒ RON = 107, MON = 89
– Effect on performance and operating 

range, i.e. speeds, boost, etc.

Ethanol as an HCCI Fuel
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• Speed sweep ⇒ CA50 = 372°CA
– Autoig. similar to gasoline for RPM >900.
– Most fuels:  Tin < 100°C as speed is 

reduced ⇒ indicates LTHR (cool flame).
– Ethanol shows no LTHR!

• Boost has only moderate effect on Tin.
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• Performs similarly to gasoline, conds. studied. 
• Good potential for HCCI fuel / fuel-component.
• Ethanol is a true single-stage ignition fuel.

– May offer advantages for control & boosted oper.
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Detailed Exhaust Speciation – PRF80
• Joint project with LLNL ⇒ spec. analysis.

Sandia ⇒ engine op. & data interpretation.

• Conducted fueling(φ)-sweep & data for 
near-misfire conditions.  Results provide:
– Data for aftertreatment & model validation.
– Improved understanding of combst. process.

• PRF80 is a 2-stage ignition fuel at 
conditions studied. ⇒ Affects emissions 
compared to iso-octane & gasoline.
– OHC fraction is greater for PRF80.
– Unreacted-fuel fraction is much lower.  
⇒ Cool-flame reactions incr. fuel breakdown.
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• Ratio of n-heptane / iso-octane is 19-23%, 
compared to 25% in fuel.
– n-Heptane breaks down more readily, but it 

induces substantial iso-octane breakdown.

• Relatively high conc. of n-Heptene & Phenol 
⇒ former due to n-Heptane reactions.
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Future Work
• Complete investigation of intake boost for extending the high-load limit of 

gasoline-fueled HCCI at a representative speed,1200 rpm (FY09).

• (FY10) Expand boost study to include a range of higher engine speeds, 
boost levels, and back-pressures for realistic turbo-charger efficiencies.
– Two-stage fuels to be done as part of Chevron-funded project.

• Extend TS study:  1) improve diagnostic S/N & optical setup, 2) investigate 
methods of increasing TS, and 3) determine cause of flows producing TS. 
– Collaborate with J. Oefelein to apply LES modeling ⇒ mechanism / enhancement.

• Additional ethanol studies over a wide range of operating parameters: 
EGR, load, & boost to high levels ⇒ with M. Sjöberg, Adv. SI-Fuels Lab.

• Complete exhaust-speciation analysis for 2-stage ignition fuel, PRF80, and 
compare with single-stage ignition fuels, gasoline and iso-oct. ⇒ with LLNL.
– Analyze emiss. species for near misfire with single- and two-stage ignition fuels.

• Continue to collaborate with LLNL on improving chemical-kinetic 
mechanisms and on CFD/kinetic modeling.
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Summary
• Quantitative temperature-map images show that thermal strat. (TS) develops 

progressively during latter compression stroke ⇒ throughout charge.

• Data indicate that TS results from wall-heat transfer and convection.
– Future work will focus on understanding the mechanism for bulk-gas TS, and 

potential methods for increasing it to increase the high-load limit of HCCI.

• EGR substantially improves boosted HCCI operation with gasoline fuel.
– Achieved 16.3 bar IMEPg, Ind. Thermal-Eff. = 47%, no Knock & no NOx or PM. 
– Near high-load limit for conventional diesel.  Shows significant potential for 

extending HCCI range – full time HCCI?

• Ethanol is a promising HCCI fuel.  Performance is generally similar to 
gasoline, but no low-temp. (“cool-flame”) chemistry.  
– Possible advantages for control and for boosted op. ⇒ additional studies req’d. 

• Detailed exhaust speciation of a two-stage ig. fuel (PRF80), shows 
significantly different behavior from single-stage fuels, iso-octane & gasoline.
– More breakdown of fuel & fuel-like species to smaller species, higher OHC fract.
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