Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

Ken Rappé Pacific Northwest National Laboratory May 19, 2009

acep_03_rappe

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start February 2005
- Finish February 2009
- 100% Complete

Budget

- Total Project Funding
 - DOE \$1,350K
 - CRADA
- Funding received in FY08
 - \$350K
- Funding received in FY09
 - \$350K

Barriers

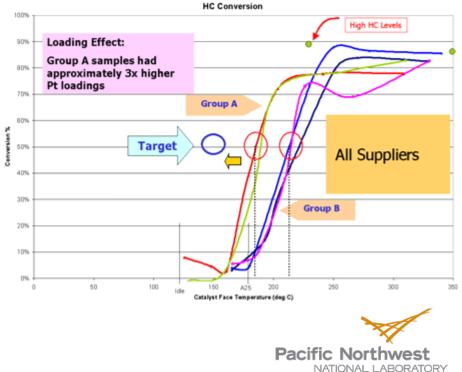
- LTC HC & CO emissions
- High exhaust gas temp. requirements
- Catalyst fundamentals

Partner

- Caterpillar, Inc.
- CRADA
 - Work-in-kind contribution
- Project lead
 - Dr. Ronald Silver

Objectives

Develop low-temperature HC & CO oxidation catalysts to enable HCCI application

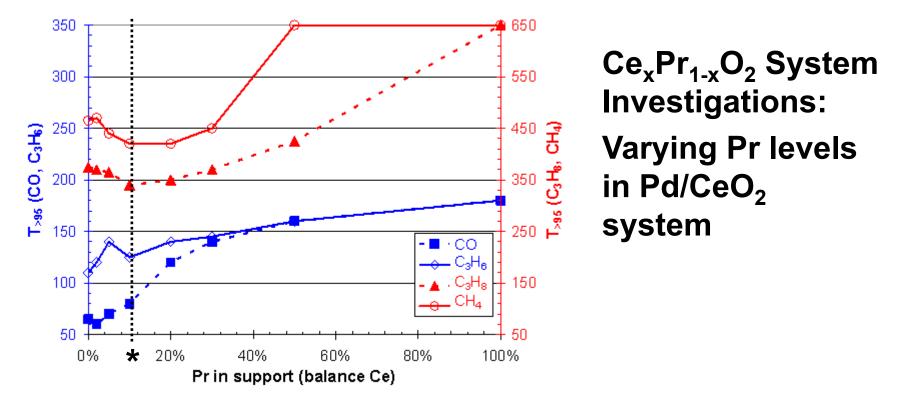

CO Conversion

Akin to the cold start problem, except the exhaust never reaches light-off temperatures on commercial catalysts.

Specifications to vendors:

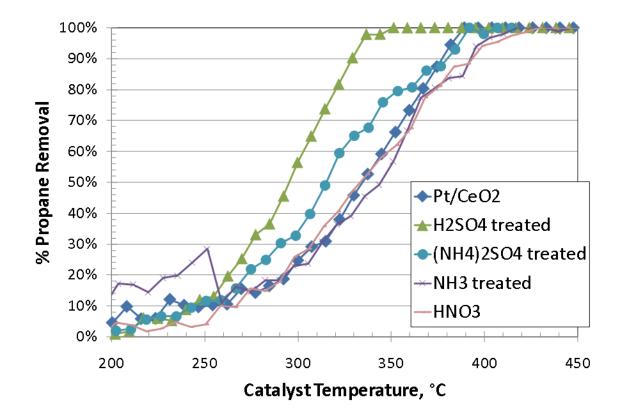
HC oxidation: 90% at 175°C and higher **HC light-off:** 50% at < 150°C

CO oxidation: 99% at higher temperatures **CO light-off:** 50% at < 150°C


Milestones & Approach

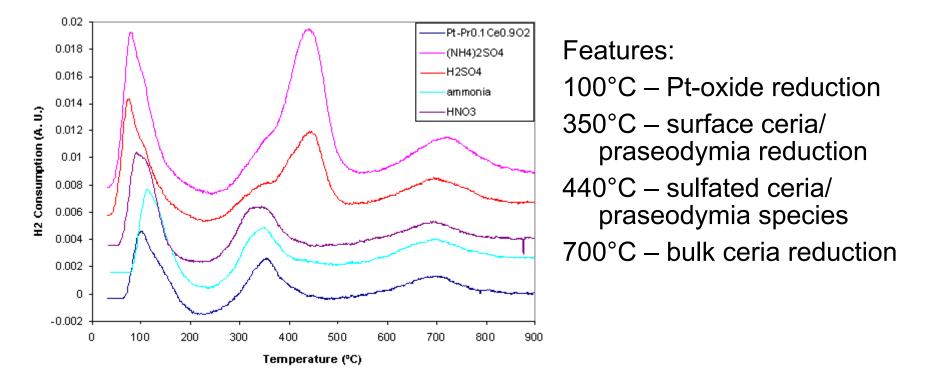
- Milestones for the past two years of effort
 - Complete bench-scale assessment of transients
 - Completed
 - Complete optimization of monolithic formulations
 - Completed
 - Complete steady-state and transient engine testing
 - Completed
- Approach
 - Catalyst formulation, characterization & screening
 - Assess monolith-supported catalysts
 - Bench scale transient studies
 - Catalyst scaling for engine testing
 - Engine testing: steady-state and transient
 - Correlation between bench & engine scale

Technical Accomplishments – Review


Addition of praseodymium (Pr) enhances low-temperature REDOX capacity of the CeO₂ catalyst, improving the low-temperature oxidation capacity.

Improvements needed to improve paraffinic activity of the system.

2%Pt/Ce_{0.9}Pr_{0.1}O₂ system: Catalyst pretreatments investigated in an attempt to improve activity of system.



Surface pre-sulfation significantly improves propane activity of the system.

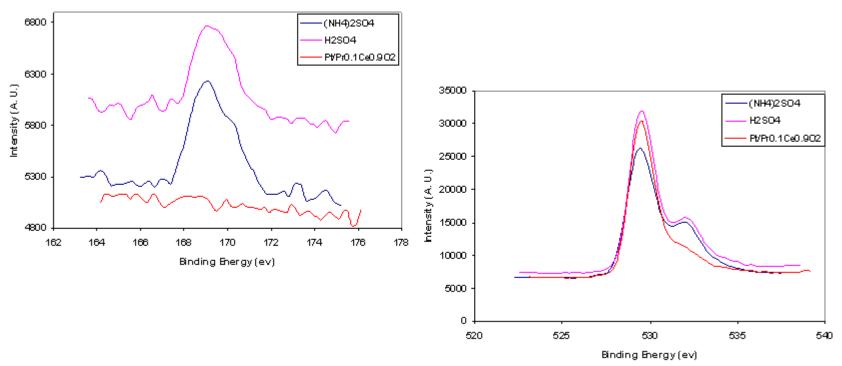
2%Pt/Ce_{0.9}Pr_{0.1}O₂ system

Effect of different catalyst pretreatments: TPR results

- (NH₄)₂SO₄ & H₂SO₄ pretreatment improve reducibility of Pt-oxide species
- Formation of new sulfated feature at 440°C

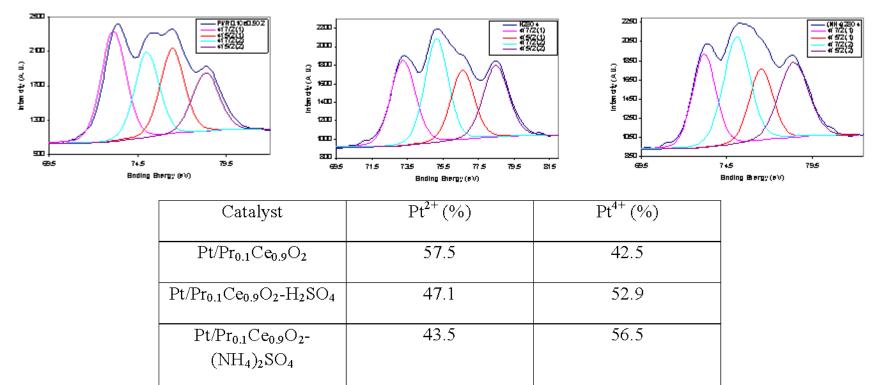
2%Pt/Ce_{0.9}Pr_{0.1}O₂ system

Effect of different catalyst pretreatments: BET results


Catalyst	Surface area (m ² /g)	Pore volume (cc/g)	Pore size (A)
2%Pt/Pr _{0.1} Ce _{0.9} O ₂	46.20	0.2374	173.1
2%Pt/Pr _{0.1} Ce _{0.9} O ₂ -H ₂ SO ₄	45.87	0.2829	184
$ \begin{array}{c} 2\% Pt/Pr_{0.1}Ce_{0.9}O_{2}-\\ (NH_{4})_{2}SO_{4} \end{array} $	44.91	0.2697	184.2
2%Pt/Pr _{0.1} Ce _{0.9} O ₂ -HNO ₃	51.26	0.06717	14.73
2%Pt/Pr _{0.1} Ce _{0.9} O ₂ - ammonia	47.29	0.2304	185

Textural properties of system (SA, PV, PS) relatively unaffected by pre-sulfation of catalyst surface.

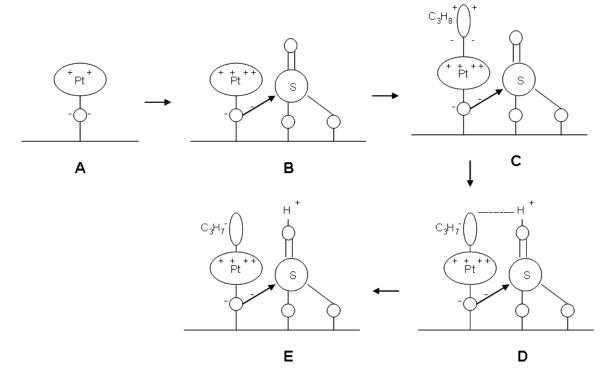
2%Pt/Ce_{0.9}Pr_{0.1}O₂ system


Effect of different catalyst pretreatments: XPS results

- S⁶⁺ identified at ~169 eV, indicating sulfate feature.
- Relative ratio of peaks at 529, 532 eV indicates more oxygen shifted to higher binding energy, likely indicating presence of a SO₄²⁻ feature.
 Pacific Northwest NATIONAL LABORATORY

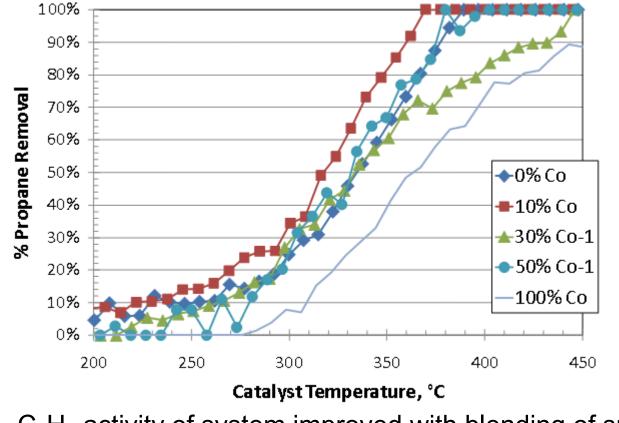
2%Pt/Ce_{0.9}Pr_{0.1}O₂ system

Effect of different catalyst pretreatments: XPS results



- Pt state affected by sufation.
- Effect of SO₄²⁻ strong electron-withdrawing capacity.

 $2\% Pt/Ce_{0.9} Pr_{0.1}O_2 \text{ system}$

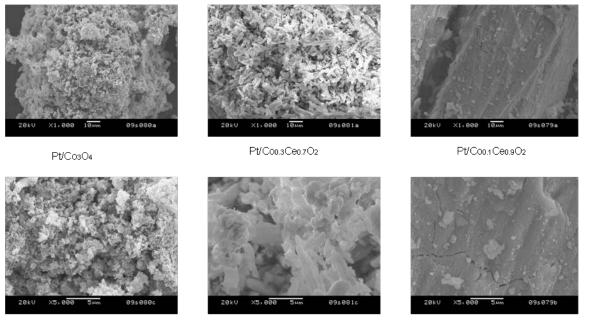

Proposed 'improved' propane oxidation mechanism

Propane adsorption – hydrogen extraction generally accepted as the rate determining step in the process.

2%Pt/Ce_xCo_{1-x}O₂ system interrogation: Co employed in an attempt to improve paraffinic activity of the system.

C₃H₈ activity of system improved with blending of small amounts of Co into CeO₂ system

Pacific Northwest

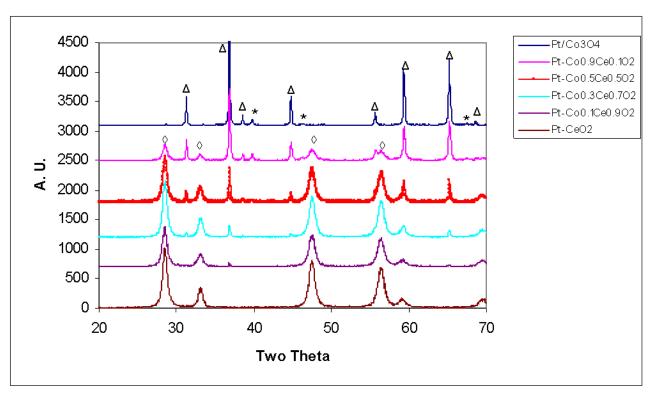

2%Pt/Ce_xCo_{1-x}O₂ system interrogation: BET results

Catalyst name	Surface area (m ² /g)	Pore volume (cc/g)	Pore size (A)
Pt/Co _{0.1} Ce _{0.9} O ₂	75.81	0.2665	152.3
Pt/Co _{0.3} Ce _{0.7} O ₂	48.67	0.1934	123.6
Pt/Co _{0.5} Ce _{0.5} O ₂	37.60	0.2008	123.2
Pt/Co _{0.9} Ce _{0.1} O ₂	9.727	0.03715	24.98
Pt/Co ₃ O ₄	1.567	0.08406	28.8

- Textural properties remain intact with blending of small amount of Co into CeO₂ system (10%).
- Larger amounts of Co result in moderate to significant structural changes

2%Pt/Ce_xCo_{1-x}O₂ system interrogation: SEM studies

Pt/C03O4


Pt/C00.3Ce0.7O2

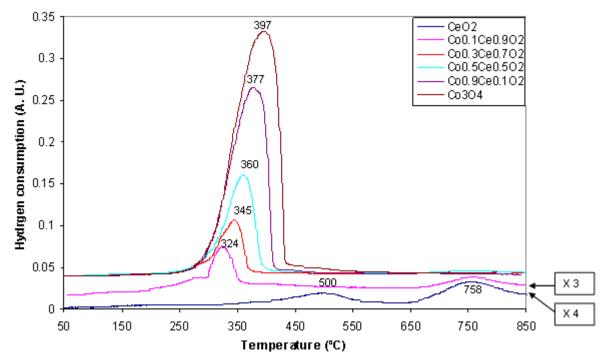
Pt/Coo.1Ceo.9O2

- Small amount of Co (10%) shows surface effects only
- Significant morphological differences with larger amounts of Co

2%Pt/Ce_xCo_{1-x}O₂ system interrogation: XRD analyses

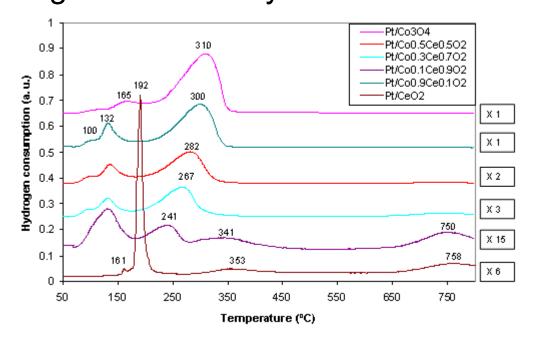
CeO₂ peaks (\diamond) remain relatively strong through 50% Co blending.

Appearance of platinum peaks (*) indicates strong Pt agglomeration with larger (>50%) amounts of Co blended into system.
Pacific Northwest

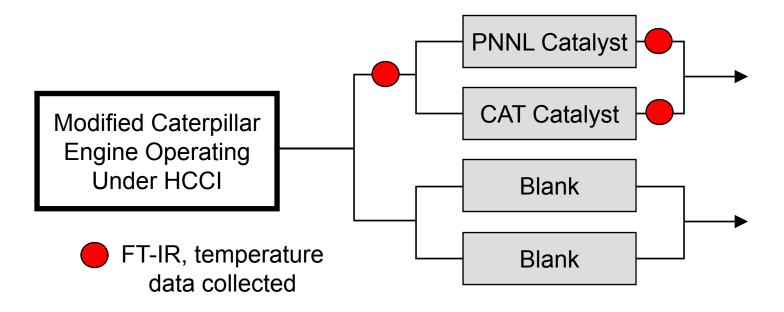

2%Pt/Ce_xCo_{1-x}O₂ system interrogation: Platinum particle size

Catalyst	Pt/Co ₃ O ₄	$Pt/Co_{0.9}Co_{0.1}O_2$	$Pt/Co_{0.5}Ce_{0.5}O_2$	$Pt/Co_{0.3}Ce_{0.7}O_2$	$Pt/Co_{0.1}Ce_{0.9}O_2$
Pt (nm)	39.9	37.9	22.4	N. A.	N. A.

- Pt metal remains well dispersed with moderate amounts of Co blended into the CeO₂ system.
- Significant metal agglomeration obvious with larger amounts of Co as indicated in XRD analyses.


2%Pt/Ce_xCo_{1-x}O₂ system interrogation: TPR investigations of supports only

- Co feature reduced from 397°C to 324°C with larger amounts of ceria in the sample. Surface ceria feature at 500°C improved in the presence of Co to ~280°C with 10% Co.
 - Indicates strong synergistic effects between metals.


2%Pt/Ce_xCo_{1-x}O₂ system interrogation: TPR investigations of catalysts

- Ce/Co combined samples promote Pt reduction at lower temperature (100°C/132°C).
- Ceria promotes improved Co reduction from 310°C to 241°C, analogous to support only interaction. Surface ceria feature captured there with small to moderate Co amounts in catalyst.

Engine Testing at Caterpillar

PNNL & Caterpillar® diesel oxidation catalysts

- 2.47 L each
- 25% total flow: 35K/hr to 122K/hr SV

Catalyst Supplier oxidation catalyst

- 🔳 17 L
- 100% total flow: 13K/hr to 26K/hr SV.

6-inch Monolith Brick Coating Details

6 inch diameter 5 $\frac{3}{4}$ inch height. 1159 gram weight, washed by acetone, 2-propanol, 10% HNO₃, and rinsed with D.I. H₂O to pH >5. Dried in air.

Slurry:

 $Ce_{0.9}Pr_{0.1}O_2$ was prepared by calcination of $Pr(NO_3)_3$ and $Ce(NO_3)_3$ aqueous solution in air at 650°C for 4 hours Aqueous slurry of 12 wt% $Ce_{0.9}Pr_{0.1}O_2$ was prepared by ball-mill

Coating:

Dipped dried brick into slurry followed by drying in vacuum oven at 70°C. Same procedure was repeated 3 times to get ~20 wt% loading. Brick was then calcined at 450°C for 4 hours.

2 wt% Pd coating:

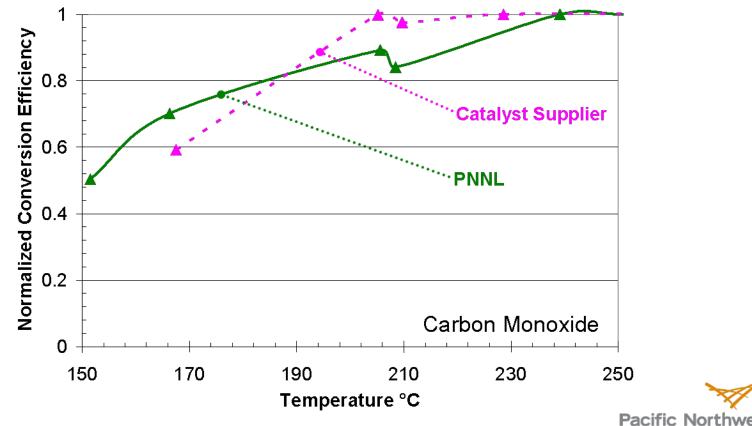
Pd was coated on $Ce_{0.9}Pr_{0.1}O_2$ loaded brick using 4 wt% Pd(NH₃)₄(NO₃)₂ aqueous solution via wetness impregnation method followed by vacuum drying at 80°C and calcination at 450°C for 4 hours.

Normalizing for Space Velocity

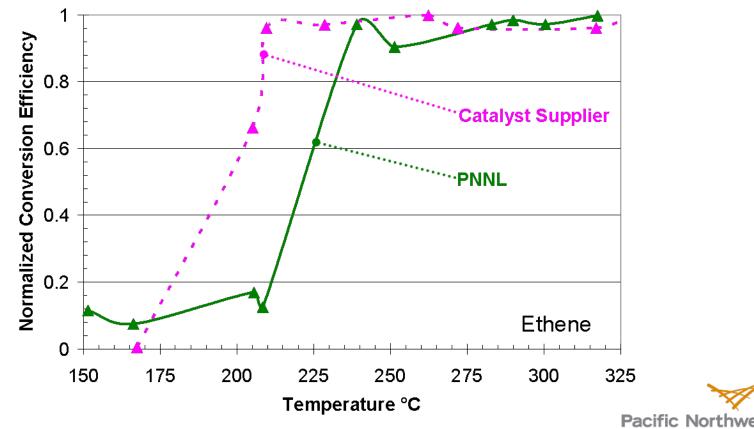
Caterpillar Engine Testing

Normalizing for space velocity (assuming 1st order kinetics and mass transfer limitation) Allows comparison of PNNL/CAT catalysts to SV of a commercial supplier catalyst at total flow

$$\eta(\xi) = 1 - \left[1 - \eta(\xi_0)\right]^{\frac{\xi_0}{\xi}}$$


- η = fractional NOx conversion efficiency
- ξ = space velocity (SV) of interest
- ξ_0 = reference SV at which conversion efficiency is known

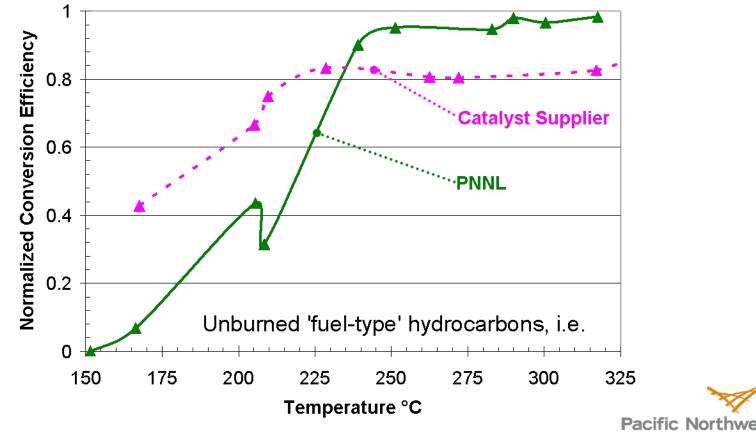
Engine Testing


Carbon Monoxide (CO) Results

Supplier catalyst: 240% precious metal loading vs. PNNL catalyst. T_{50} CO target (150°C) nearly reached with PNNL catalyst!

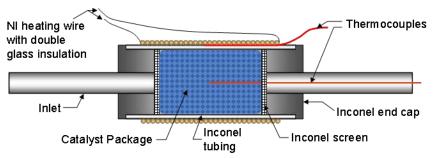
Engine Testing Ethylene (C₂H₄) Results

Neither sample exhibited good C_2H_4 activity.

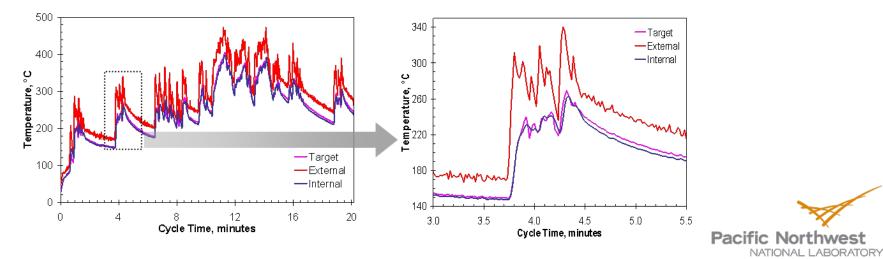


Engine Testing

Unburned Fuel (>C₅) Results


PNNL catalyst reached $T_{90}HC @ <240^{\circ}C$.

Catalyst supplier did not achieve T₉₀HC until almost 350°C!

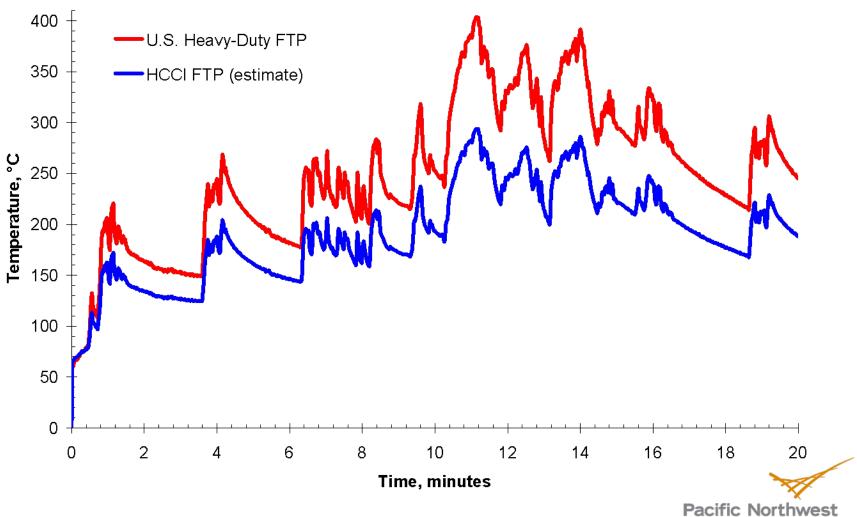

Transient Testing

Highly thermally-conductive pellet loaded with catalyst powder inside inconel 600 device. Nickel 200 resistive wire heater encapsulated by double-glass insulation. Two thermocouples, one inside pelleted support, one outside housing.

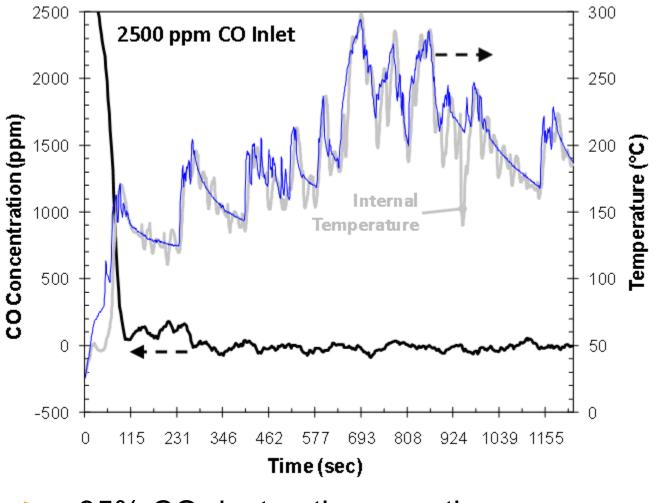
U.S. Heavy Duty Federal Test Procedure (FTP)

Temperature control achieved using external/internal thermocouples in conjunction with predictive algorithm driving the heater profile against a constant cooling load.

Assumptions:

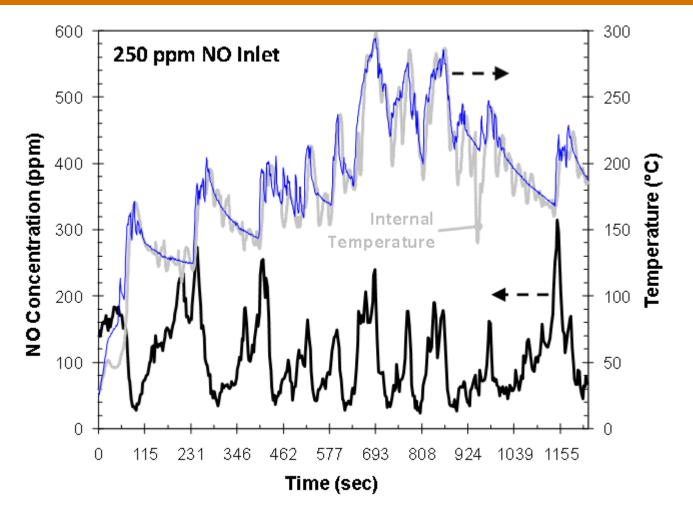

Heavy Road Idle (IdleHR) – 150°C HCCI Idle (IdleHCCI) – 125°C Heavy Road High Speed/High Load (HLHR) – 450°C HCCI High Speed/High Load (HLHCCI) – 325°C

 $HCCI Transient = IdleHCCI + (HR Transient - IdleHR) \cdot \frac{HLHCCI - IdleHCCI}{HLHR - IdleHCCI}$



Transient Testing – HCCI

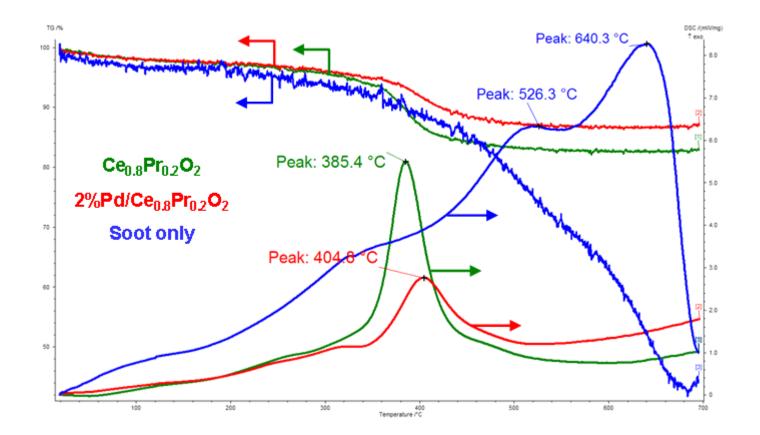
Transient Engine Temperature Profiling


Transient Testing – HCCI

>95% CO destruction over the entire transient cycle

Transient Testing – HCCI

>56% oxidation of 250 ppm NO over the entire transient cycle



Soot Oxidation Feasibility Investigations

- Examined feasibility of formulation (Ce_{0.8}Pr_{0.2}O₂) for contact soot oxidation.
- Compared soot oxidation of Ce/Pr formulation to commercial supplier formulation

3:1 Mass Ratio Catalyst:Soot Mixture

Ce_{0.8}Pr_{0.2}O₂ provides significant enhancement of soot oxidation over soot alone and 2%Pd metal

3:1 Mass Ratio Catalyst:Soot Mixture

Ce_{0.8}Pr_{0.2}O₂ provides significant enhancement of soot oxidation over commercial soot oxidation catalyst.

Summary

- Paraffin oxidation activity improved in systems via surface sulfation and via incorporation of small amounts of Co.
- Engine testing at Caterpillar, results are very promising.
- Transient testing has shown good transient CO oxidation capacity and good NO oxidation activity.
- Potential for contact soot oxidation applicability.

Targets

- CO light-off: 50% CO oxidation at 150°C
 - Successful in achieving CO light-off at well less than 100°C.
- CO oxidation: 99% at higher temperatures
 - Successful in achieving complete CO oxidation at 100°C and less.
- HC light-off: 50% HC oxidation at 150°C.
 - Successful in achieving C_2H_4 light-off at less than 100°C.
 - Have gotten C_3H_8 light-off to less than 300°C.
- HC oxidation: 90% HC oxidation at 175°C.
 - Successful in achieving >90% C_2H_4 oxidation at <100°C.

Ron Silver, Tom Paulson, Colleen Eckstein – Caterpillar, Inc.

Ken Howden – DOE OFCVT

U.S. Department of Energy Energy Efficiency and Renewable Energy

FreedomCAR & Vehicle Technologies Program

