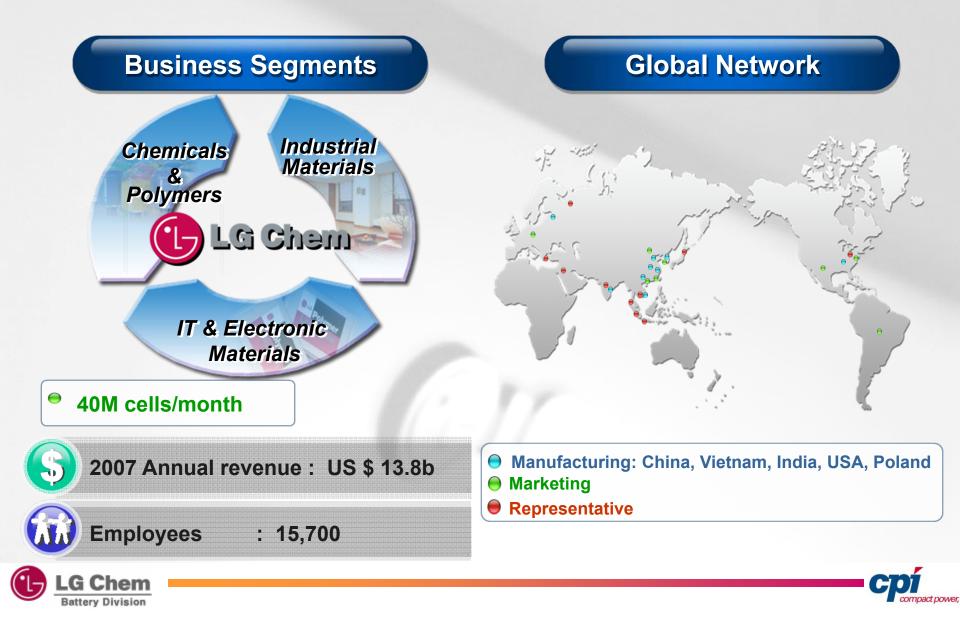
USABC Program Highlights

Compact Power / LG Chem


"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

- A wholly-owned subsidiary of LG Chem, based in Troy, MI.
- Established in Colorado in 2000 to focus on automotive batteries.
- Partner-of-Choice for Turn-key solutions for vehicular applications.
- Accumulated know-how in automotive and battery business

LG Chem – a Global Company

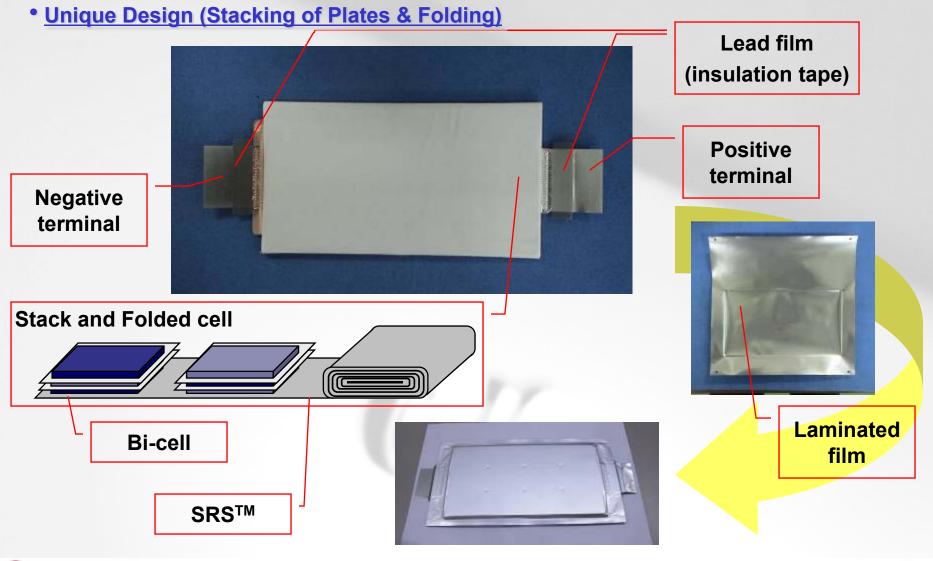
CPI Focus: Pack Design/Production/Support

Battery Pack Concepts and Designs

- Power & Signal Architectures
- Packaging
- > Thermal Management

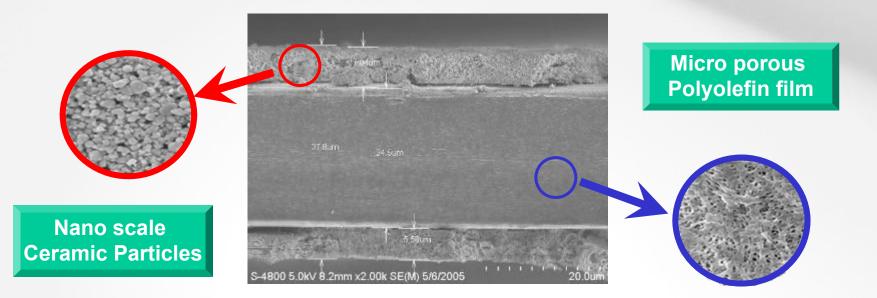
Battery Management Systems

- Charge control algorithms (State-of-Charge estimation)
- Vehicle interface
- Diagnostics (State-of-Health estimation)
- Battery Pack Production and Support
 - Battery Program Management for US Customers
 - Pack-level Analysis, Validation, and Verification
 - > System Integration & Test Support
 - > Prototypes


Cell Construction Features

- Unique Design (Stacking of Plates & Folding)
 - High rate capability (easy current collection)
 - More suitable for scaling-up (handling of long electrodes not required)
 - Maintains dimensional stability during cycling
 - Proven technology in mass production of small cells
- <u>Robust laminated packaging design</u>
 - Much simpler, more reliable and less expensive manufacturing
 - Easy to change cell footprint

Simple Structure and Manufacturing


LG Chem Battery Division

Safety Reinforcing Separator (SRS™)

SRS[™] provides LG Chem's lithium-ion polymer battery superior abusetolerance

- 1. By preventing internal short circuit
- 2. By improved thermal and mechanical strength

• Has ~6x the puncture strength of conventional separator

	LiCoO ₂	LiMn ₂ O ₄	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂	LiFePO ₄
Energy	High	Low	High	High
Power	Moderate	High	Moderate	Mod/High ¹
Abuse Tolerance	Poor	Good	Poor	Very Good
Cost	High	Low	High	High
Low Temp Perf	Moderate	High	Moderate	Moderate ¹
Life	Long	Short	Long	Long

By blending spinel with a layered compound, we have retained the superior abuse tolerance, high power, and cost advantage of spinel, while simultaneously increasing specific energy and life.

Spinel-based chemistry

- Good material base, cost, power advantages
- Life enhanced via additives, cathode and anode compositions, etc.

➢ Proprietary separator technology (SRS[™])

In-house development of separator coating technology

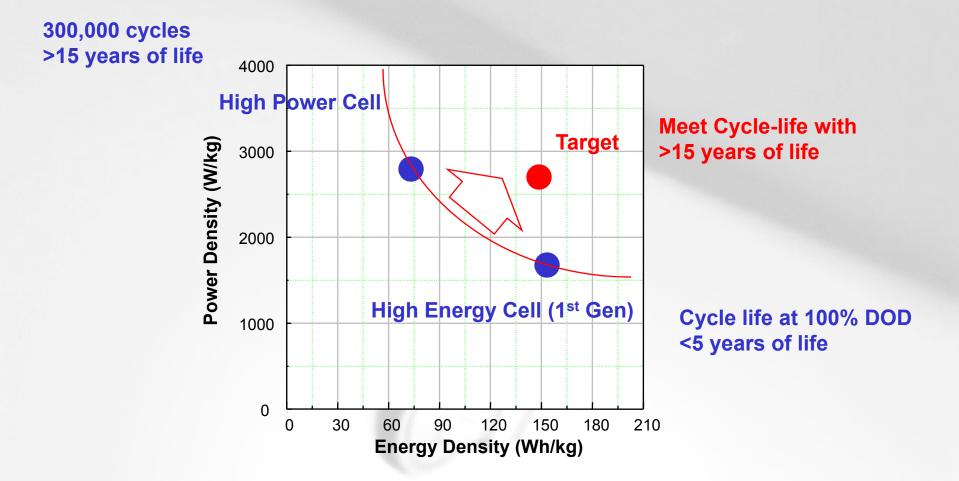
Laminated packaging

Extensive experience with various aspects of sealing, packaging and other electrical and mechanical requirements

Components	Materials		
Cathode	Mn-Spinel based		
Anode	Graphite or Amorphous-carbon		
Separator	SRS™		
Electrolyte	LiPF ₆ in Organic solvents (Gel type)		
Packaging	Laminated		

Program Description

PHEV \$12.9M (65/35) 27 Months


Program Objectives

- Life (Calendar- and Cycle)
- Thermal management
- > Abuse-tolerance
- Cost

PHEV cell design characteristics:

Base spinel

- Abundant, easy synthesis, low and stable cost, high power
- But poor calendar-life due to Mn²⁺ dissolution, Mn plating on carbon anode.
- Approaches to improve calendar life while maintaining spinel advantages
 - Different dopants, morphologies, coatings, additives, blends
- Anode
 - Coatings, additives, blends

Calendar-Life
 2-3 yrs life in 2004
 > 10 yrs in 2006
 > 15 yrs now

Cycle-life
 < 160k cycles in 2004
 > 550k cycles in 2007

Improved Abuse-Tolerance

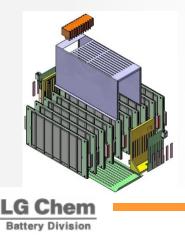
Key Cell features enhance abuse-tolerance

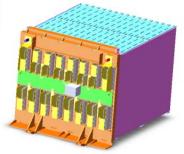
- Spinel-based chemistry
- Proprietary separator
- Laminated Packaging

Results: Superior Abuse-tolerance

- Short-circuit
 - Cell bulging only, Temp <90°C</p>
- Nail-penetration
 - No smoke, no fire. Temp <100°C</p>
 - Overcharge
 - No explosion, no fire.
- Thermal stability
 - No explosion, no fire

Engineered for


- High energy/Power density
- Minimum overheads- mass, volume, cost
- Thermal management
- Long life (Robustness, Cell Protection)
- Superior Abuse-Tolerance



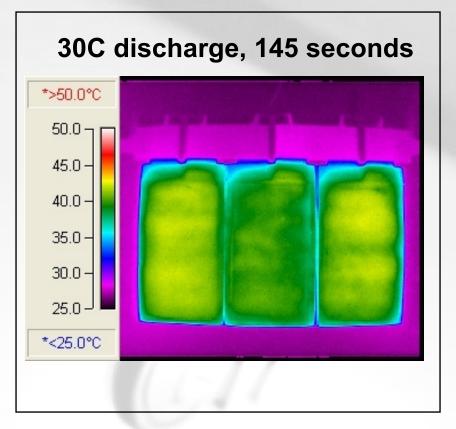
Pack Architecture & Modularity

- Laminated packaging cells provide opportunities and challenges for module/pack building- how to hold them (vertical or horizontal), how to weld leads together etc..
- Modular architectures enable:
 - Lower piece cost by enabling lower cost automation, shipping, etc.
 - Lower investment (tooling) by commonizing repeating parts
- Modularity, with Prismatic cells, allows more efficient space usage
 - Packs not constrained to simple rectangular shapes

Thermal Management

Pack Thermal Challenges

- 1. Remove accumulated heat from environmental soaking ("parked on hot asphalt")
- 2. Remove operating environmental heat (exhaust, ambient road heat while driving)
- 3. Maintain inter-cell temp $\Delta < 3-5^{\circ}C$
- 4. Remove heat generated by cells during operation
- 5. Add heat to cells during start up in very cold climates
- Improved Thermal Management


 Longer Cell Life
- Methods
 - ✤ Air
 - Liquid Coolant
 - * Refrigerant

Efficient Heat-Transfer

Temperature distributions at end of test

- Electrochemically active area uniform, within 2-3°C
- Courtesy of NREL: Dr. Pesaran's Team

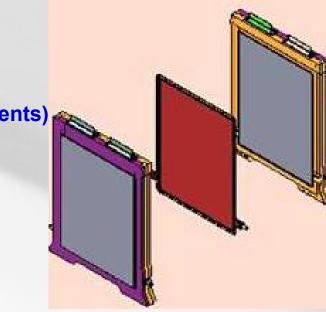
Thermal Management: Air Cooling

Attractive for most vehicle applications

- Low heat generation and even thermal distribution mean low cooling demand (once environmental heat is removed)
 - Cabin air generally cool enough to remove heat
 - Blower and duct work required.

Airflow

2 mm spacing between cells is generally sufficient


Opportunities

- Improved airflow design
- Higher efficiency fans; blowers

Thermal Management: Liquid Cooling

- An option for certain conditions
 - Very dense cell packaging
 - High environmental heat loads
 - Also enables cell pre-heating (very cold environments)
- Requires <1mm spacing per cell
- Several challenges
 - Requires cooling loop (25-35°C)
 - Coolant fill and maintenance
 - Leak-tight interfaces

Thermal Management: Refrigerant Cooling

- An option for certain conditions
 - High environmental heat loads
 - Cabin air not readily available
 - Allows zonal control

Battery Division

- Requires refrigerant loop; but:
 - Avoids coolant fill and maintenance
 - Obviates need for complex coolant manifolding and risks of leaking

Battery Management System

- BMS alone is relatively small percentage of total pack cost, but
- Has big impact on cell/pack life and safety
- One key result has been the development of SOC algorithm using Kalman Filter and its subsequent versions such as the Sigma Point Kalman Filter
 - Model-based State-Space estimator, self-correcting and accounts for
 - Rapidly changing parameters (hysteresis & polarization time constants, etc.)
 - Slowly changing parameters (e.g., due to cell aging)
 - Uses current measurements for short term SOC dynamics; voltage for longer term dynamics, and
 - Uses Coulomb counting in closed-loop environment to improve accuracy
- Simulation Results: <u>+/- 3% within 100s at > -20°C;</u> <u>+/- 5% @ -20°C</u>
- Additional improvements in BMS including:
 - Application-Specific Integrated Circuits (ASIC) for repetitive, high-quantity functions (e.g., cell monitoring, balancing)
 - Distributed, multiplexed architectures (wiring, connector savings)

Production Programs

Chevy Volt

- GM selected LG Chem to be the cell as well as the electronics supplier for the Volt program (Jan 2009). GM will produce the packs in high volume.
- Initial packs will be manufactured by CPI/LGC. Launch Nov 2010.

Hyundai Sonata

- At first to be marketed in Korea in Summer 2009.
- To be launched in the US in 2010.

Summary

Significant progress within the past few years have been made by LGC/CPI in spinel-based chemistry to satisfy automotive battery performance, life, abuse-tolerance and cost requirements.

Current/Future work focuses on validating the life of the cells.

Acknowledgements

- LG Chem team (Yojin Kim, Seungdon Choi, Kwangho Yoo, Youngjoon Shin and other team-members)
- USABC (DOE and Big 3) for their financial and technical support in course of these programs
- INL (Jon Christophersen, Jeff Belt), NREL (Ahmad Pesaran, Kandler Smith), LBNL (Vince Battaglia) and SNL (Pete Roth) for invaluable technical support

