Nanostructured Metal Oxide Anodes

A. C. Dillon (P.I.) L. A. Riley, S-H. Lee*, Y-H. Kim, C. Ban, D. T. Gillaspie and Ahmad Pesaran (Task Leader) National Renewable Energy Laboratory, Golden *University of Colorado, Boulder

> Project ID: es_35_dillon

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- October 1, 2007
- September 30, 2010
- 50% complete

Budget

 Total project funding FY08: \$250K, FY09: \$350K
 Project lead: Anne Dillon

Barriers

- Cost: developing metal oxide based anodes from abundant, inexpensive metals
- Energy density: improvements in both gravimetric and volumetric energy densities have been demonstrated
- Safety: Anodes operate at higher potential relative to Li metal than graphite, eliminating the risk of Li plating
- Lifetime: Durable and reversible cycling has been achieved

Partners

- M.M. Thackeray and S-H. Kang, Argonne
- M.S. Whittingham, SUNY-Binghamton
- A. Greenshields, fortu
- S-H. Lee, Univ. of Colorado
- S.M. George, Univ. of Colorado

Objectives

The ultimate goal of this activity is to develop optimized metal oxide nanostructured electrode materials to enable high-performance, durable, and affordable Li-ion batteries for power-assist HEVs and PHEVs that meet the DOE/FreedomCAR targets.

- Optimize MoO₃ nanoparticle electrodes in coin cell configuration and compare to previous results for electrophoresis deposited thin film MoO₃ electrodes.
- Demonstrate a full cell with an MoO₃ anode and state-of-the-art cathode with a high energy density and stable cycling performance.
- Employ first principles calculations to obtain better understanding of Liinsertion processes and for the prediction of new materials.
- Synthesize MoO_2 nanoparticles to test theoretical prediction that Li will be extracted at a lower potential (~ 1 V).
- Explore possibility of other metal oxide nanostructures made from even less expensive starting materials.

Milestones

- Sept 2008-report on optimization of MoO₃ thick electrodes tested in a coin cell configuration, complete. (In this report a reversible capacity of ~ 1050 mAh/g was demonstrated with good cycling and rate capability. This high capacity represents a 60% improvement compared to the thin film MoO₃ electrodes, 630 mAh/g)
- July 2009-report on optimization of MoO₃ anodes in a full cell with cathodes supplied by ANL. (Full cell data for the MoO₃ anodes coupled with both $\text{Li}_{1.05} \text{ M}_{0.95}\text{O}_2$, $M = \text{Ni}_{1/3}$, $\text{Co}_{1/3}$, $\text{Mn}_{1/3}$ and the state-of-the-art lithium rich cathode $0.5\text{Li}_2\text{MnO}_30.5\text{Li}(\text{Mn}_{0.31}\text{Ni}_{0.44}\text{Co}_{0.25})\text{O}_2$ is presented here.)

Approach

• MoO₃ nanoparticles (nano-rods and nanospheroides) are produced using hot-wire chemical vapor deposition (HWCVD) at different reactor pressures.

Electrophoresis

Material slurry

Coin Cell

- Thin film battery electrodes (2-3 μ m) have been fabricated with novel electrophoresis.
- Thick film electrodes (~35 μm) for coin cell testing have been optimized versus a Li counter electrode by varying: binder/conductive additive composition and electrode pretreatment.
- Full cell has been also optimized with ANL cathodes.

A.C. Dillon, A.H. Mahan, S-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, Thin Solid Films 516 (2008) 794.

Previously Reported Thin Film Electrodes by Novel Electrophoresis

- Porous thin film without binder or conductive additive obtained after electrophoresis.
- Improved durable capacity (~ 630 mAh/g) found when using the thin film as anode and cycling between 3.0- 0.005 V.

Technical Accomplishments Varying the Ratio of AB : PVDF

- Polymer rich electrodes provide continuous adhesion through the film.
- Maximum cycling capacity of ~1050 mAh/g (theoretical 1170 mAh/g) achieved at a ratio of 70:10:20 (MoO₃:AB: PVDF).

Technical Accomplishments Variation in Pre-heat Treatment

 Highly improved capacity of 1050 mAh/g is achieved by using a ratio of 70:10:20 and pre-heating at 250 °C.

- Electrical resistance steadily decreases with increase of temperature.
- Decreased capacity at 300 °C likely due to the binder breakdown and isolation of certain particle clusters.

Technical Accomplishments Explanation of Pre-heat Requirements

- Water desorption from the electrode observed at a high temperature (> 200 $^{\circ}$ C).
- CO₂ species are also observed at a higher temperature perhaps due to oxidation of the acetylene black.
- Polymer decomposition observed at a surprising low temperature (300°C).
- Early decomposition may be catalyzed by nanostructured MoO₃

Technical Accomplishments Explanation of Pre-heat Requirements Results confirmed by Infrared Spectroscopy (IR)

- H_2O/OH originated from acetylene black, PVDF and NMP solvent.
- Weakly bound water removed by pre-heat treatment.
- Presence of bound water is one reason for irreversibility in cycling without preheating treatment.

Technical Accomplishment Nano-sized Li_xMoO_3 : Displacement redox reaction?

Displacement redox reaction^{*} for MoO₃ nanoparticles :

 $MoO_3 + 6Li^+ + 6e \leftrightarrow 3Li_2O + Mo$ $6Li \leftrightarrow 6Li^+ + 6e$

 $MoO_3 + 6Li \leftrightarrow 3Li_2O + Mo$

What is size distribution of Mo clusters?

First-principles molecular dynamics (FPMD)

- $(Li_4MoO_3)_{36} \& (Li_6MoO_3)_{36}$
- Start from uniformly lithiated alpha phase of MoO₃
- T = 600 K (to speed up the MD simulations)
- VASP code

Technical Accomplishments FPMD simulations for Li_xMoO_3 nanoparticles (x = 4, 6)

Small clusters of Mo_n are easily formed within the nanoparticle.

The size *n* of the Mo cluster ranges from 2 to 9. The Mo nanoclusters are small enough to enable reversible Li insertion/desertion.

Our theoretical results support a displacement redox reaction which involves the formation and decomposition of metal nanoclusters.

Technical Accomplishments In Situ Raman Showing Disordered Structure after Cycles

In situ Raman confirms significant loss in structural order in first insertion cycle consistent with molecular dynamics simulations.

Technical Accomplishments Full Cell Testing Using ANL Cathode

- Full cell capacity of ~80 mAh/g achieved when cycling between 4.0-1.0 V by coupling with Gen 2 cathode obtained from M. Thackeray and S-H. Kang (ANL).
- The coin cell contains 13 mg cathode material and 1.7 mg anode material.
- In the full cell MoO₃ has a reversible capacity of ~677 mAh/g and the cathode capacity is 90 mAh/g.

Technical Accomplishments Full Cell Testing Using ANL Cathode

Stable capacity of 140 mAh/g (commercial capacity: ~80 mAh/g) when cycling the coin cell between 4.0-0.01 V by coupling with lithium rich cathode, 0.5Li₂MnO₃0.5Li(Mn_{0.31}Ni_{0.44}Co_{0.25})O₂ from M. Thackeray and S-H. Kang at Argonne.
Cell contains 7.4 mg cathode material and 1.6 mg anode material.

•MoO₃ has a reversible capacity of ~ 776 mAh/g and cathode capacity is 170 mAh/g.15

- Previously theoretical predictions indicated crystalline MoO₂ would have a lower lithium extraction potential.
- Nano-MoO₂ was produced by the modified HWCVD process.
- However, upon cycling a thin film of the MoO_2 material, the voltage profile was not significantly different from that of MoO_3 .
- The discrepancy with the theory may be attributed to the fact that the nanoparticles become highly disordered upon cycling, with the calculations performed for crystals.

Technical Accomplishments Durable Cycling at High Rate of C/2

• Improved cycling stability achieved by applying a thin atomic layer deposition (ALD) coating.

• ALD coating enables reversible capacity of ~910 mAh/g when cycled $_{17}$ at C/2.

Recent Development Synthesis of Iron Oxide by Hydrothermal Technique

•Fe₂O₃ nanofibers (40-50 nm width) has been produced using hydrothermal process followed by post-heat at 300 °C.

•Fe₃O₄ nanoparticles (10-20 nm) obtained by using reducing agent in hydrothermal process. •Iron oxides allow for a more economical system.

Recent Development Oxygen Vacancy: WO₃, MoO₃, and Fe₂O₃

- Oxygen vacancy creates defect states near the conduction band of transition metal oxides such as WO_3 , MoO_3 , and Fe_2O_3 .
- For sub-stoichiometric amorphous WO_{3-x} the conduction band is populated to a larger extent.
- The conduction band filling will lower the potential inserted Li.
- By creating oxygen vacancies and substoichiametric amorphous samples, we can reduce Li potentials of MoO_3 and Fe_2O_3 to make them more suitable anodes.

Recent Development Atomic Layer Deposition (ALD) Improves Durability

Improved cycling stability achieved for both cathode and anode by applying a thin ALD coating. ALD coatings eliminate SEI and surface reactions that cause degradation.

Proposed FY 09 Future Work

- Optimize full cells with ANL cathodes to improve durable capacity and rate capability (July 2009 Milestone).
- Work with fortu (Switzerland) to develop high-voltage cell.
- Perform theoretical calculations to understand the hysteresis of the charge/discharge for the MoO₃ nanoparticles. Use theoretical calculations to predict composition and orientation of economical oxide nanopaticles with more desirable voltage profiles.
- Synthesis of alternative nanostructures made from abundant elements, such as Fe₂O₃, Fe₃O₄, and MnO₂ will be explored. Inexpensive synthesis routes—including HWCVD, hydrothermal techniques, and electrodeposition—will be employed.
- Apply a protective ALD coating on graphite nanoparticles to eliminate surface degradation mechanisms and improve rate capability.

Conclusions

- Capacity of MoO₃ anode has been increased to ~ 1050 mAh/g by optimizing the coin cell configuration. TPD, TGA, and IR employed to facilitate these optimizations.
- Theoretical calculations were performed to explain the mechanism for the increased Li-insertion observed in the coin cell testing.
- The MoO₃ anode has been successfully paired with two Argonne cathodes: $Li_{1.05}$ $M_{0.95}O_2$, $M = Ni_{1/3}$, $Co_{1/3}$, $Mn_{1/3}$ and the state-of-the-art lithium rich cathode $0.5Li_2MnO_30.5Li(Mn_{0.31}Ni_{0.44}Co_{0.25})O_2$
- In-situ Raman capabilities, established this year, show that MoO₃ nanoparticles become highly disordered in the initial cycle.

	Gravimetric Capacity (mAh/g)	Volumetric Capacity (mAh/cm ³)	Full Cell Capacity (mAh/g)
FY08	630	2200	
FY09	1050	800	140
Commercial	350 (graphite)	770 (graphite)	80 (graphite/LiCoO ₂) (J.Power Sources 88, p.237, 2000)

Acknowledgments

- DOE OVTP Support
 - David Howell

- NREL Program/Project Guidance
 - Ahmad Pesaran
 - Terry Penney