Vehicle Technologies Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Annual Merit Review Energy Storage R&D and ARRA Overview June 8, 2010 David Howell Team Lead Hybrids and Electric Systems US Department of Energy

VTP Energy Storage Overview

- Charter and Goals
- R&D Program Structure and Budget
- DOE Battery R&D Landscape
- Accomplishments

Energy Storage R&D Activities

- Laboratory and University Research
- Battery Development Contracts
- Material and Processing Improvement
- Battery Cost Modeling
- Summary

CHARTER: Advance the development of batteries and other electrochemical energy storage devices to enable a large market penetration of hybrid and electric vehicles.

Drivetrain electrification is inherently efficient and a clear pathway to low-carbon transportation. Program targets focus on enabling market success (\$)

Potential Benefits

Potential oil savings in 2030 is ~1.25 million barrels per day (Mbpd)

Corresponding GHG emissions reduction is ~170 million metric tons of CO2 equivalent (MMTCO2e)

Team Structure

Program focus and priorities have changed over time, and the funding profile has changed accordingly.

Year 1992 – 1998	Focus/Priority : EV focus (NiMH,	Energy Storage R&D Budget
	Lead Acid)	*Presidents Budget Request
	• • •	Budget (\$, Million)
1995 – 2006	HEV focus	\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100
6 6 6 6	(NiMH, Li-Ion)	\$69.4
	•	\$60 - \$48.3 \$40.9
2007 –	PHEVs (Li-ion)	\$40 - _{\$22.5} \$24.5
Present	•	\$20
		\$0
		2005 2006 2007 2008 2009 2010 2011 Fiscal Year

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Vehicle Technology Battery R&D Activities

Energy Efficiency & Renewable Energy

The energy storage effort is engaged in a wide range of topics, from fundamental materials work through battery development and testing

- High energy cathodes
- Alloy, Lithium anodes
- High voltage electrolytes
- Lithium air couples

- High rate electrodes
- High energy couples
- Fabrication of high E cells
- Ultracapacitor carbons
- Hybrid Electric Vehicle (HEV) systems
- 10 and 40 mile Plug-in HEV systems
- Advanced lead acid
- Ultracapacitors

Industry Focus

Lab and University Focus

Vehicle Technologies Program

Laboratory and University Focus Applied and Exploratory Research

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

DOE/NETL has selected ten companies to focus on advanced materials development, safety, and manufacturing process improvement

ЗМ	Advanced high-energy anode materials	(TIAX	Internal short diagnostics & mitigation technologies	
Angstron	Hybrid Nano Carbon Fiber/ Graphene Platelet-Based	Ener Del Lithium Power Systems	Develop technologies to mitigate abuse tolerance	
Materials High-capacity Anodes		D - BASF	High volume, low cost,	
NC State & ALE Inc	High-Energy Nanofiber Anode Materials	The Chemical Company	for cathode materials	
-FMC	Stabilized Lithium metal powder	A123 SYSTEMS	Develop advanced, low cost electrode	
SION Develop and improve Lithium sulfur cells for electric vehicle applications			manufacturing technology	

DOE cost-share: \$17.8 million (cost-shared by industry)

Energy Efficiency & Renewable Energy

VTP collaborated with the DOE Industrial Technologies Program to fund Advanced Battery Processing Technology Development

A123 SYSTEMS	Domestic supply chain for and processing methods of anodes (\$1.5M total effort).
Johnson Controls	Substantial improvement of electrode processing quality control (\$762k total effort).
	Processing and characterization of novel cathode materials (\$870k total effort).
PLANAR Energy Devices	Scalable and cost-effective processing for all solid-state LIBs (\$1M total effort).
	Improved separator and unique method of production (\$1.7M total effort).

Industry Focus DOE/USABC PHEV Developers

DOE Cost Share: \$12.5 M per year (cost-shared by industry)

A123 SYSTEMS	Develop batteries using nanophase iron-phosphate	USABC Request For Proposals
Johnson Controls SAFT SAFT LG Chem	Develop batteries using a nickelate/ layered chemistry Develop batteries using manganese spinel chemistry	<u>Topics</u> Advanced High-Performance Batteries for Electric Vehicles Advanced Energy Storage Systems for
Ener Del Lithium Power Systems	Develop cells using nanophase lithium titanate and a high voltage spinel cathode material	 high Power, Lower Energy Power Assis Hybrids Advanced High-Performance Batteries f
ЗМ	Develop and screen Nickel-Manganese -Cobalt cathode materials	Plug-in Hybrid Electric VehiclesTechnology Assessment - Electric
CELGARD	Develop low-cost separators with high temperature melt integrity	Vehicle Applications
	Develop low-cost separators with high temperature melt integrity	

Dottom Attributo	Current Status	Goals		
Ballery Allribule		2012	2014	
Available Energy	3.4 kWh	3.4 kWh (10 mile)	11.6 kWh (40 mile)	
Cost	\$700-\$950 Per kWh	\$500/kWh	\$300/kWh	
Cycle Life (EV Cycles)	2,500+	5,000	3000-5000	
Cycle Life (HEV Cycles)	300,000	300,000	200,00-300,000	
Calendar Life	6-12 years	10⁺ years	10⁺ years	
System Weight	60-80 kg	60 kg	120 kg	
System Volume	50+ liters	40 liters	80 liters	

Key Challenges

- Weight and volume for the PHEV-40
- Extending life (while operating in 2 discharge modes)
 - Reducing cost

Battery Cost Models

ENERGY Energy Renewa

Energy Efficiency & Renewable Energy

Objectives of Battery Cost Modeling

- Provide a common basis for calculating battery costs
- Provide checks and balances on reported battery costs
- Gain insight into the main cost drivers
- Provide realistic indication of future cost reductions possible

USABC model -

• Detailed hardware-oriented model for use by DOE/USABC battery developers to cost out specific battery designs with validated cell performance

Argonne model -

- Optimized battery design for application
- Small vs. large cell size
- Effect of cell impedance and power on cost
- Effect of cell chemistry
- Effect of manufacturing production scale

TIAX model –

- Assess the cost implications of different battery chemistries for a frozen design
- Identify factors with significant impact on cell pack costs (e.g., cell chemistry, active materials costs, electrode design, labor rates, processing speeds)
- Identify potential cost reduction opportunities related to materials, cell deign and manufacturing

Key Results

- Current high volume PHEV lithium-ion battery cost estimates are \$700 \$950 / kWh.
 - Cost (\$/kWh) should be determined on "useable" rather than "total" capacity of a battery pack
 - ANL & TIAX models project that lithium-ion battery costs of \$300/kWh of useable energy are plausible.
- Material Technology Impacts Cost
 - Cathode materials cost is important, but not an over-riding factor for shorter range PHEVs Cathode & anode active materials represent less than 15% of total battery pack cost.
 - In contrast, for longer range PHEV's and EVs, materials with higher specific energy and energy density have a direct impact on the battery pack cost, weight, and volume.
 - Useable State-of-Charge Range has direct impact on cost for a given technology
 - Capacity fade can dramatically influence total cost of the battery pack
- Manufacturing scale matters
 - Increasing production rate from 10,000 to 100,000 batteries/year reduces cost by ~30-40% (Gioia 2009, Nelson 2009)
 - For example, consumer cells are estimated to cost about \$250/kWh.

\$1.5 Billion for Advanced Battery Manufacturing for Electric Drive Vehicles "Commercial Ready Technologies"

Material Supply	Cell Components	Cell Fabrication	Pack Assembly	Recycling
Lithium Supply Chemetall Foote	Cathode Prod. A123 BASF Toda	Iron Phosphate A123	Iron Phosphate A123	Lithium Ion TOXCO
	Anode Prod. EnerG2 Pyrotek FutureFuel	Nickel Cobalt Metal JCI SAFT EnerDel	Nickel Cobalt Metal JCI SAFT EnerDel	
	Electrolyte Prod. Novolyte Honeywell	Manganese Spinel CPI-LG DOW-Kokam	Manganese Spinel GM DOW-Kokam	
	Separator Prod. Celgard ENTEK/JCI		Advanced Lead Acid Batteries Exide	
	Other Component H&T Waterbury		East Penn	
\$28.43 M	\$259 M	\$735 M	\$462 M	\$9.55 M

Advanced Battery Prototype Fabrication and Testing Facilities

Laboratory	DOE Grant	Facility Description
Argonne	\$8.8 M	-Battery Prototype Cell Fabrication Facility -Materials Production Scale-up Facility -Post-test Analysis Facility
Idaho National Laboratory	\$5.0 M	High-energy Battery Test Facility
Sandia National Laboratories	\$4.2 M	Battery Abuse Testing Laboratory
	\$2.0 M	Battery Design and Thermal Testing Facility

Accomplishments of Battery Development Partners

- Most HEV performance requirements have been met by Li-ion batteries developed with DOE support.
- Significant progress has been achieved toward reducing the cost and increasing the performance of PHEV Batteries.

Johnson Controls-Saft (JCS)

 Supplying lithium-ion batteries to BMW and to Mercedes for their Hybrids.

A123Systems

- Selling a 5kWh battery for Hymotion's Prius conversion.
- Partnering with Chrysler on EV battery development.

Compact Power/LG Chem

• Will supply GM Volt PHEV battery

JCS high-power lithium-ion battery pack

Laboratory and University Focus Commercialization Activities and Notable Accomplishments

Energy Efficiency & Renewable Energy

Phostech Lithium

- Composite high energy cathodes
 - licensed to Toda and and to BASF
 - developed by Dr. Thackeray of ANL
- Conductive, electroactive polymers
 - licensed to Hydro Quebec, world's leading supplier of this material.
 - developed by Prof. Goodenough at Univ Texas
- Hydrothermal synthesis technique for LiFePO₄
 - licensed to Phostech, for production
 - developed by Dr. Whittingham at SUNY
- Conductive polymer coatings and a new LiFePO₄ fabrication method
 - used by Actacell Inc fabricate high power Li ion cells
 - developed by Prof. Manthiram at Univ Texas
- Polymer electrolytes for Li metal rechargeable batteries
 - Seeo Inc a start-up of Prof. Balsara (LBNL) will commercialize material
 - 2008 R&D100 award
- Nano-phase Li titanate oxide (LTO)/Manganese spinel chemistry
 - licensed to EnerDel
 - developed by Dr. Khalil Amine at ANL, 2008 R&D100 award

Summary

ENERGY Energy Efficiency & Renewable Energy

- The American Reinvestment and Recovery Act provides significant funding to address the lack of domestic battery manufacturing.
- Significant progress has been made toward developing commercially viable PHEV batteries.
- Focus is on developing next generation lithium-ion batteries for longer range PHEVs and EVs.
- ARPA-E and BES contributing significant funding for novel and transformational battery technologies.

Thank you

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Monday, June 7 - Poster Session: ARRA Grants, BES and Exploratory Research Atrium (lower level), 6:30-8:30 PM

Tuesday, June 8 -Presentations: AM/PM Industry Development Contracts Poster Session : BES and Exploratory Research Atrium (lower level), 6:30-8:30 PM

Wednesday and Thursday, June 9-10 -Presentations: Applied Battery Research

www.annualmeritreview.energy.gov/

Dave Howell, Team Lead Hybrid and Electric System 202-586-3148