Emissions Control for Lean Gasoline Engines

Jim Parks, Shean Huff, Kevin Norman, John Thomas, Vitaly Prikhodko, Bill Partridge, Jae-Soon Choi

Oak Ridge National Laboratory

2010 U.S. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

June 7-10, 2010

Gurpreet Singh and Ken Howden Advanced Combustion Engine Program U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

- Timeline
 - Project start date: Oct. 2009
 - Project end date: not set
 - % Complete: Ongoing
 - Note: this project is a recent adaptation from a previously funded project that focused on Lean NOx Trap catalysts for diesel engines

- Barriers
 - Cost-effective emission control for lean gasoline engine vehicles

- Budget
 - FY2010: \$200k

- Collaborations/Interactions
 - DOE Vehicle Technologies Program
 - Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS)
 - General Motors
 - Loan of Euro spec Lean GDI BMW vehicle

Objectives / Relevance

- Objective: Address technical challenges of enabling market penetration of lean gasoline engine vehicles by studying emission control approaches to achieve emission regulation compliance
- Relevance: U.S. passenger car fleet is dominated by gasoline-fueled vehicles. Enabling introduction of more efficient lean gasoline engines can provide significant reductions in passenger car fuel consumption (thereby lowering petroleum use and reducing greenhouse gases).

Milestones

 Characterization of exhaust from the LNT system of a lean gasoline engine vehicle including reductants produced for LNT regeneration and reporting of information to the CLEERS community. (September 30, 2010)

Approach

- Study emission control devices on multi-cylinder lean gasoline engine on engine dynamometer; potential emission control devices include:
 - Lean NOx Trap (LNT) catalyst
 - Selective Catalytic Reduction (SCR) catalyst
 - Urea-based
 - Hydrocarbon-based
 - Three-way catalyst (TWC) [likely as part of system]
 - Oxidation catalyst [or oxidative function of catalysts]
 - Hydrocarbon trap catalysts [or cold start specific technologies]
 - Combinations of catalysts (e.g. LNT+SCR)
- Complement engine-based studies with bench flow reactor studies and other catalyst characterization tools
- Communicate results to stakeholders with CLEERS being a primary conduit for information exchange

Technical Accomplishments and Progress

Beginnings of project are focused on gaining information on lean gasoline engine emissions with end goal of engine dynamometer experimental platform

- Chassis-dynamometer experiments performed to characterize exhaust from MY2008 BMW 120i vehicle which uses TWC + LNT technology for European emissions compliance
 - Leveraging with Vehicle Systems program
- Bench flow reactor studies of CLEERS LNT (a lean gasoline catalyst) under lean gasoline engine exhaust conditions [ongoing]
- Acquire a modern lean gasoline engine vehicle suitable for engine dynamometer studies [in progress]
 - Targeting same BMW engine with associated LNT exhaust system
 - Plan to develop Drivven control system for full control of engine operation

Accomplishments – Chassis-Dynamometer Study

- Engine specs (N43B20)
 - 2.0l 4-cylinder
 - Lean burn combustion
 - 200bar direct Injection
 - 170 hp (130 kW) at 6,700 rpm,
 - 210 Nm (155 ft.lbf) at 4,250 rpm
 - 12:1 compression ratio
 - Dual VVT and EGR
- Exhaust
 - Split TWCs
 - LNT

Accomplishments – Experimental Focus

- Emissions and Reductant Species (this project)
 - UEGOs for both exhaust manifold legs
 - General emissions analyzers at engine out and tailpipe positions
 - Reductant focused emissions analysis at LNT inlet position
 - FTIR (NO, NO₂, N₂O, NH₃, HCs, CO, etc)
 - SpaciMS (H₂, O₂)
 - Note: some measurement at other positions with these tools
- Vehicle Systems Program project
 - Overall efficiency and emissions
 - Transient drive cycles
 - Steady-state conditions
 - Mapping of engine for database
 - Start-stop feature
 - Mild hybridization (Intelligent alternator)
 - See "Light-Duty Lean GDI Vehicle Technology Benchmark" (presentation VSS17) for more information

Accomplishments: Drive Cycle Results

- Fuel Economy Benefit of Lean Operation
 = 4-14% depending on drive cycle
 - FTP: 13% better fuel economy with lean operation
 - HFET: 14% better fuel economy with lean operation
 - US06: 4% better fuel economy with lean operation
- Tailpipe NOx emissions exceed US Tier II Bin 5 Standard

2008 BMW 1 Series - NOx Emissions

2008 BMW 1 Series Fuel Economy

	Stoich	Lean	Lean with Start/Stop	Lean with Start/Stop And Inteligent Alt.
Fuel Consumption [MPG]	26.02	29.52	30.50	31.25
Improvement [%]	0	13.5	17.2	20.1

Lean engine improves fuel economy but fails to meet US emission standards

Accomplishments: Conditions for data collection

- Transient drive cycles:
 - FTP, HFET, US06
- Matrix of driving conditions examined for mapping purposes
 - Vehicle speed =
 - 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000 RPM
 - Load =
 - 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%
- Will focus on 3500 RPM load sweep data for today's review

Large amount of data acquired; analysis ongoing

Accomplishments: AFR as function of load (3500 rpm)

- Lean operation up to 60% load
 - (leaner at lower loads)

Lean operation at lower loads; stoich for high loads

Rich LNT regeneration at similar AFR

Engine Load
Note: order of load sweep=60%,50%,70%,40%,80%,30%,90%,20%,10%

(Steady-state operation)

Accomplishments: Catalyst temperatures

- LNT temperatures generally between 300 and 500°C
- TWC temperatures generally between 500 and 820°C

Temperature Range = 300-500°C

Accomplishments: NOx Concentration

- LNT adds TWC-function at stoich conditions
- Challenging high concentration of NOx for LNT
- LNT out NOx significant (lean and rich)

Very high NOx concentration (vs. diesels)

Accomplishments: NOx concentration at 20% load

- Significant NOx breakthrough occurs even during short cycle
- Large NOx emissions during rich operation for regeneration

NOx profiles show significant NOx breakthrough and desorption during regeneration

3500 rpm

Accomplishments: Lean-Rich cycle period

- Short lean period due to filling of LNT (15 sec limit?)
- Rich period varies with load (temp?)

Short time for lean operation due to high NOx levels

Accomplishments: Reductant Chemistry

- H₂ present at higher levels than CO during rich period
 - Water-gas-shift over TWC

Primary reductants are H_2 , CO, NH_3

NH₃ detected at small levels can perform some reduction on LNT

Accomplishments: Reductants at 30% load

- Sharp peaks of reductants from rich operation
- H₂, CO, and NH₃ are main reductants

Temporal profiles for reductants are similar

Accomplishments: Reductant Chemistry- TWC Effects

- CO concentration drops over TWC during rich operation
 - Water-gas-shift over TWC
- More analysis to come

Evidence of Water-gas-shift over TWC

Accomplishments: Drive Cycle Data

- Reductant species at LNT inlet positions during transient drive cycle (LA4)
- (4) regeneration events shown
- LNT regeneration at AFR of ~13
- H₂, CO, and NH₃ present at LNT inlet
 - H₂:CO ratio higher than observed in diesel case
 - Significant NH₃ observed (product of TWC)

Transient regenerations appear similar to steadystate observations... more analysis coming

Collaboration

- Collaboration with Vehicle Systems program (internal project) which will support PSAT program
- Intend to work in CLEERS structure to share results and identify research needs
- General Motors (loan of Euro spec Lean GDI BMW vehicle)
- Catalyst manufacturers
 - Open to study of new formulations

Future Work

- Remainder of FY2010
 - Continue analysis of results from BMW 120i chassis-dynamometer experiments
 - Supply information to CLEERS via website database
 - Continue bench flow reactor capacity examination of CLEERS LNT
 - Acquire and setup lean gasoline engine with controls
- FY2011 and beyond
 - Characterization of reductant production for LNT regeneration at various operating conditions (controlled AFR, etc)
 - Examine LNT+SCR approach for NOx control
 - Carry forward from experience gained on diesel-based project

Summary

- Project focus is emission control for lean gasoline engines
 - Potential for significant reduction in petroleum use in U.S. passenger vehicle fleet
- Chassis-dynamometer based experiments on European lean gasoline engine vehicle with LNT technology for NOx control
 - Analysis ongoing; results to be shared in CLEERS
- Acquisition of lean gasoline engine for engine-dynamometer experiments underway

Jim Parks parksjeii@ornl.gov

