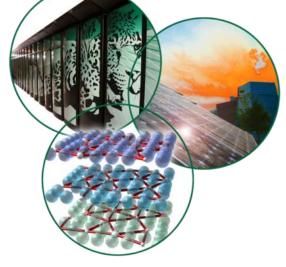

CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR

Agreements:


- Coordination of Cross-Cut Lean Exhaust Emission Reduction Simulation (8745) Stuart Daw, Vitaly Prikhodko, Charles Finney
- Joint Development of Benchmark Kinetics for LNT & SCR (8746) Jae-Soon Choi, Josh Pihl, Bill Partridge, Kalyana Chakravarthy, Todd Toops, Michael Lance, Stuart Daw

PI: Stuart Daw Presenter: Jae-Soon Choi

Oak Ridge National Laboratory

Vehicle Technologies Program Annual Merit Review June 9, 2010, Washington, DC

DOE Managers: Ken Howden, Gurpreet Singh

OAK RIDGE NATIONAL LABORATORY

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project start date:
 - -CLEERS Coordination (8745) FY00
 - -LNT & SCR Kinetics (8746) FY00
- Project end date & percent complete:
 - All ongoing

Budget

- Project funding for FY09/FY10
 - -CLEERS Coordination (8745): \$200K/\$200K
 - -LNT & SCR Kinetics (8746): \$450K/\$500K
- Funding request for FY11
 - -Similar to FY10

Fuel penalty

 Regeneration & desulfation of emission controls require extra fuel consumption

Cost of aftertreatment

- High cost inhibits market acceptance of diesel & lean-gasoline
- Durability

-At present, large built-in margin required

Partners

- Informal but close collaboration w/ CLEERS Focus Group members & DOE Diesel Crosscut Team
 - -> 20 institutions
 - -Nat'l labs: SNL, PNNL
 - -Industry: GM, Ford, Cummins, DDC, Navistar, Delphi, Umicore ...

Objectives

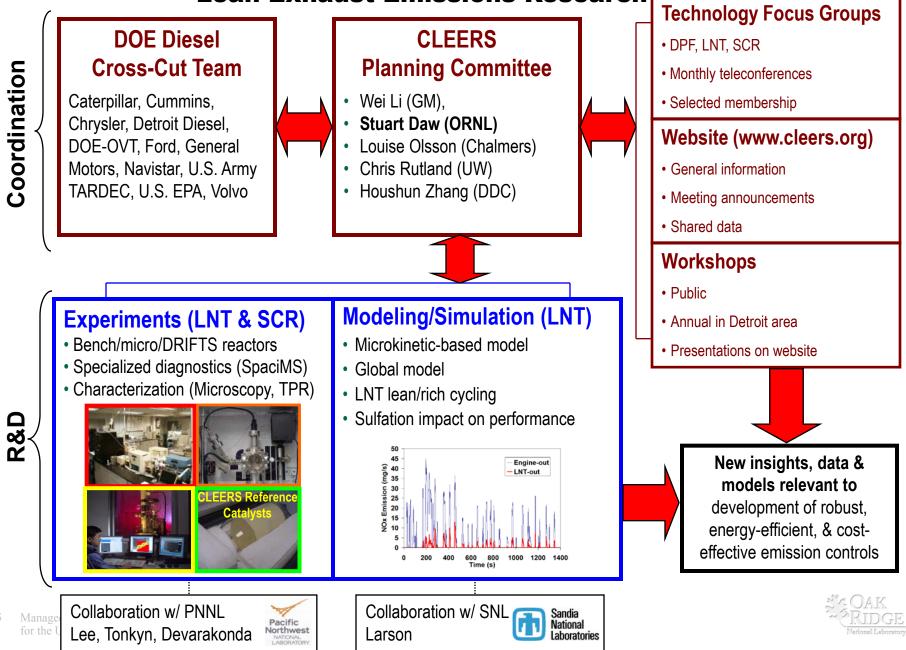
Enable robust & energy efficient lean emission control technologies by

Coordinating & conducting emissions controls simulation research

Current development of lean-burn aftertreatment is highly empirical & requires fundamental insights to significantly improve system performance & reduce cost

- Identify and prioritize R&D needs within industry, and coordinate DOE research efforts (CLEERS Coordination)
- Develop detailed technical data required to simulate energy efficient emission controls (LNT & SCR Kinetics)
 - Experiments: specialized measurements under relevant conditions to provide new insights into key LNT and SCR chemistry and kinetics
 - Modeling: consolidate new insights into LNT and SCR models that relate device and catalyst properties to fuel efficiency and emissions performance

Research targets chosen based on the latest CLEERS poll & reviewer comments SCR: types & interactions of surface species, HC poisoning LNT: sulfur impact, NH₃ mechanism (growing interest with respect to NH₃ slip control or coupled LNT-SCR system)



Milestones

- FY2009 milestones completed
 - 8745: Organized 12th CLEERS public workshop
 - 8746: Published LNT model and results for systems simulation
- FY2010 milestones on target for Sept. 2010 completion
 - 8745: Organized 2010 CLEERS public workshop
 - 8746: Publish joint results with PNNL on SCR catalyst kinetics

Approach: Prioritize/Coordinate/Perform/Disseminate Lean Exhaust Emissions Research

Technical Accomplishments

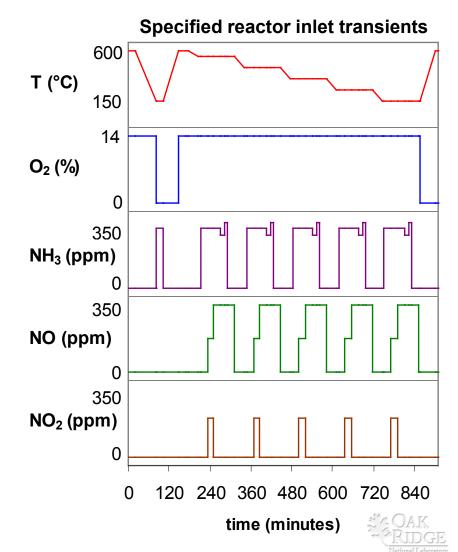
- CLEERS Coordination (8745)
 - Organized 13th (2010) CLEERS Workshop
 - Coordinated monthly Focus Group teleconferences
 - Coordinated efforts to address 2008-2009 R&D priority survey and leverage ORNL, PNNL, SNL unique capabilities
 - Proposed draft protocol for transient SCR catalyst characterization

LNT & SCR Kinetics (8746)

- Continued DRIFTS HC poisoning analysis of CLEERS reference urea-SCR catalyst
- Collaborated with PNNL on SCR modeling
- Resolved S spatio-temporal details on CLEERS reference LNT catalyst with HR-EPMA, microscopy, DRIFTS, TPR, SpaciMS, and high-speed FTIR
- Initiated detailed investigation of LNT NH₃ selectivity (reductant types, temperatures, sulfation; bench reactor, SpaciMS, high-speed FTIR, DRIFTS)
- Began incorporating NH₃ results in global LNT models
- Continued SNL collaboration micro-kinetic LNT modeling (lean/rich cycling, S)

Result Highlights: CLEERS Coordination (1/3) - ORNL continued established coordination roles

- CLEERS website
- Monthly teleconferences
 - Group telecon (20-30 domestic + int'l participants)
 - Presentations of very recent technical results
 - Host rotates among DPF, LNT, SCR Focus Groups
- Workshop #12, April 28-30, 2009, UM Dearborn
 - > 110 attendees (OEMs, suppliers, software companies, nat'l labs, universities)
 - OBD industry panel included in response to R&D gaps analysis
- Workshop #13, April 20-22, 2010, UM Dearborn
 - About 90 attendees (OEMs, suppliers, software companies, nat'l labs, universities
 - Industry panel on engine-aftertreatment systems and vehicle simulations
- Preliminary SCR transient catalyst lab protocol
 - Presented and discussed at public workshop
- CLEERS LNT model for system simulations
 - Demonstrated and published


12th CLEERS Workshop

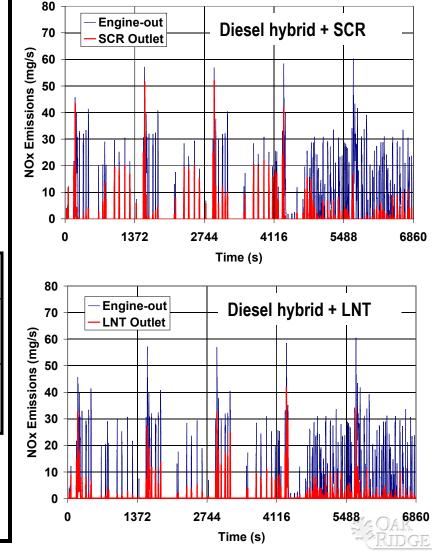
Result Highlights: CLEERS Coordination (2/3)

In collaboration with PNNL, ORNL proposed a lab protocol for transient SCR catalyst characterization

- Monolith core reactor measurements with specified inlet transient sequence
- Provides key information needed for constructing accurate SCR device models at minimum time (~24 hrs) and expense
- Specifically reveals:
 - NH₃ storage and release
 - NH₃ and NO oxidation
 - NO SCR kinetics (and NH₃/NO impact)
 - NO + NO₂ SCR kinetics
- Presented at the CLEERS Workshop and in the CLEERS Focus Groups
- Undergoing experimental validation and utilization for systems simulations

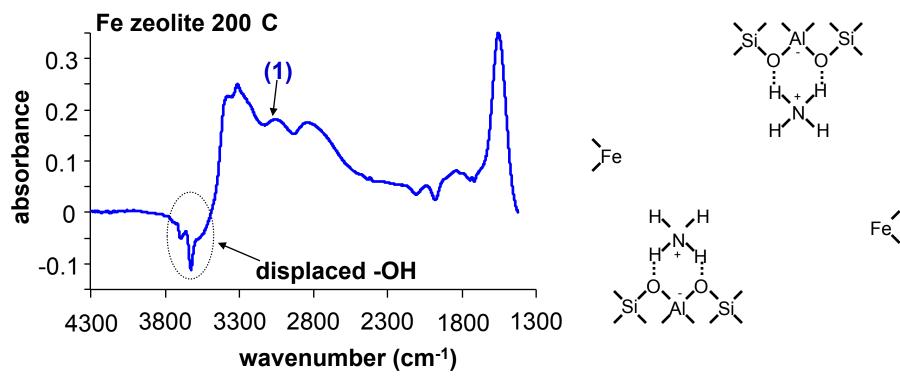
Result Highlights: CLEERS Coordination (3/3) - ORNL models are improving understanding of lean emissions control options on fuel economy

Example simulation of PHEV (see VSS017 talk)


(PSAT modeling with simplified CLEERS SCR and LNT models) •Parameters:

- Diesel engine w & w/o NO_x control (LNT vs. SCR)
- SCR with stoichiometric ratio $\rm NH_3$ to $\rm NO_x$
- 1450 kg vehicle
- 5 UDDS cycles from cold start
- 100% initial charge in 5 kWhr battery

•Results:


Diesel + SCR		Diesel		Diesel + LNT	
Fuel Economy (mpg)	Tailpipe NO _x (g/mile)	Fuel Economy (mpg)	Tailpipe NO _x (g/mile)	Fuel Economy (mpg)	Tailpipe NO _x (g/mile)
136.3	0.16 (77% red)	136.4	0.69	133.8	0.15 (79% red)

- -2% fuel penalty for LNT (higher for more NO_x removal)
- SCR almost eliminates direct fuel penalty
- But SCR has extra NH₃ emissions (0.068g/mile)

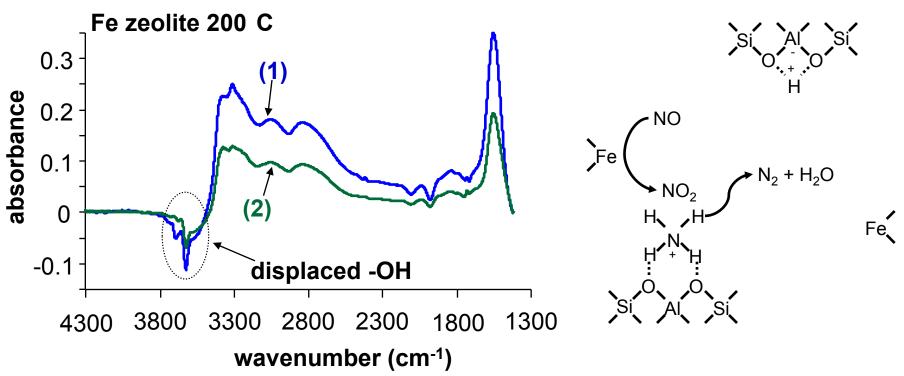
Result Highlights: SCR Research (1/2)

- Proposed mechanism for toluene poisoning of Fe zeolite SCR catalyst based on surface spectroscopy

(1) 350ppm NH₃: numerous spectral features due to adsorbed NH₃

note: all steps include 14% O₂, 4.5% H₂O, 5% CO₂

Insights shared with modeling teams at PNNL & ORNL



10 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Result Highlights: SCR Research (1/2)

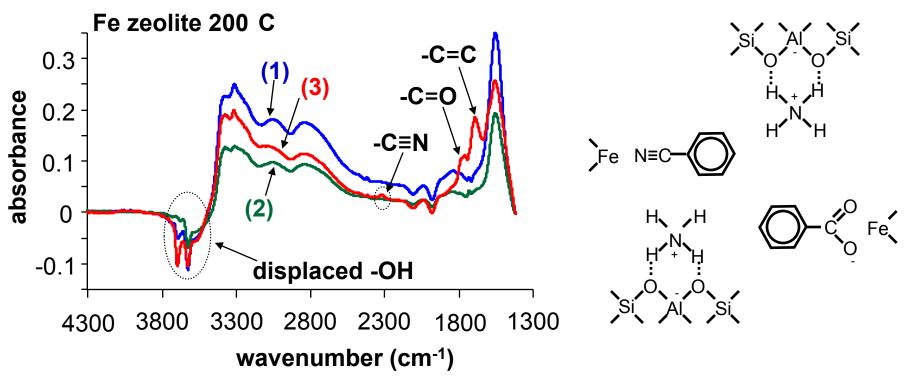
Proposed mechanism for toluene poisoning of Fe zeolite SCR catalyst based on surface spectroscopy

(1) 350ppm NH₃: numerous spectral features due to adsorbed NH₃

(2) + 350 ppm NO: surface NH_3 decreased due to consumption by SCR reaction

note: all steps include 14% O₂, 4.5% H₂O, 5% CO₂

Insights shared with modeling teams at PNNL & ORNL



11 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Result Highlights: SCR Research (1/2)

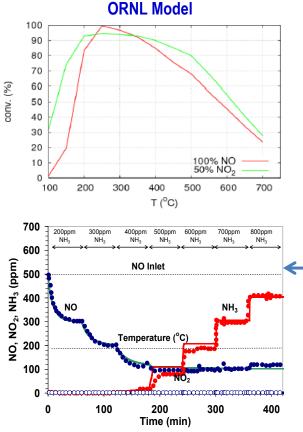
- Proposed mechanism for toluene poisoning of Fe zeolite SCR catalyst based on surface spectroscopy

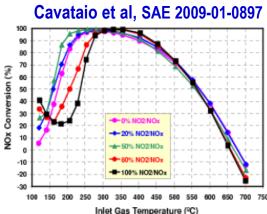
(1) 350ppm NH₃: numerous spectral features due to adsorbed NH₃
(2) + 350 ppm NO: surface NH₃ decreased due to consumption by SCR reaction
(3) + 50 ppm toluene: SCR reaction poisoned, surface NH₃ increases
note: all steps include 14% O₂, 4.5% H₂O, 5% CO₂

Insights shared with modeling teams at PNNL & ORNL

Result Highlights: SCR Research (2/2)

- ORNL is integrating multiple sources of data into SCR modeling

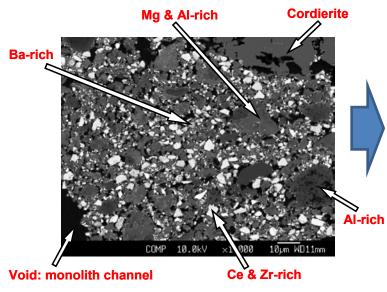

- Detailed model with PNNL (coding assistance & DRIFTS insights)
- Complementary global model for systems simulations
 - Based on published model catalyst data (Cu-ZSM5)
 - Will be updated with CLEERS SCR protocol data and DRIFTS results


Global model features:

NH₃ adsorption/desorption

 3 SCR reactions NO, NO₂, "fast"

- NO, NH₃ oxidation reactions
- N₂O not tracked for simplicity
- Future plans
- HC poisoning effects
- O₂ effect on NO SCR
- LNT-SCR systems



Points from experiments by Olsson et.al, Applied Catalysis B: Environmental 81(2008) 203-217. Lines from ORNL simulation.

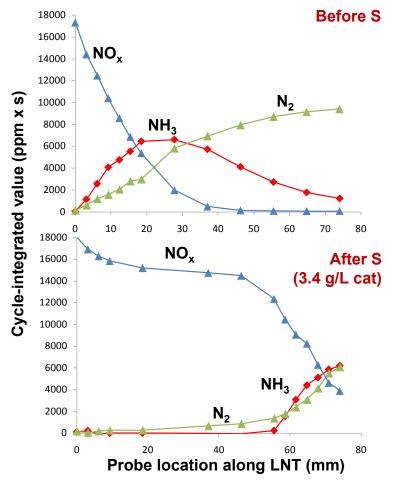
Result Highlights: LNT Research (1/5) - In-depth characterization confirmed link between commercial LNT composition & sulfur chemistry

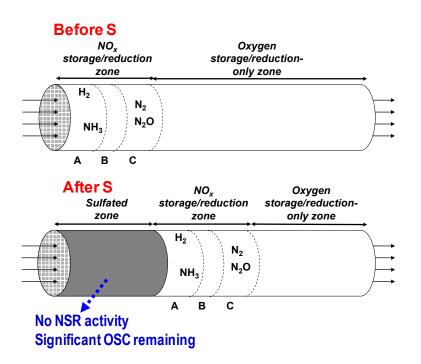
CLEERS LNT (lean GDI, Umicore) characterized with microscopy, HR-EPMA, TPR

Domain	Composition	S content (at.%)
Ba-rich	Ba (high), Ce/Zr, Pt, Pd	7.3
Ce/Zr-rich	Ba (low), Ce/Zr, Pt, Pd	2.1
Al-rich	Al, Rh, Pd	2.4
Mg/Al-rich	Mg/Al, Pt, Ce	1.2

Ba sulfation is vigorous leading to plug-like poisoning of NO_x storage sites

corroborates previous conjectures


Sulfation of Ce/Zr, AI, Mg/AI is less efficient but significant "S-trap" delaying Ba sulfation


Result Highlights: LNT Research (2/5)

- Improved spatial & temporal resolution of gas analysis confirms sulfur - NH₃ correlation

Spatial resolved new data (SpaciMS) before vs. after CLEERS LNT sulfation at 300 C (bench)

Previously proposed conceptual model

- Plug-like S poisoning of NO_x storage sites displaces active NO_x storage/reduction downstream
- As a result, length of OSC-only zone (downstream of active NSR zone) gets shorter
- More NH₃ (slipping from active NSR zone) manages to escape LNT without being oxidized by OSC

15 Managed by UT-Battelle for the U.S. Department of Energ

Result Highlights: LNT Research (3/5) - Started in-depth study of NH₃ mechanisms

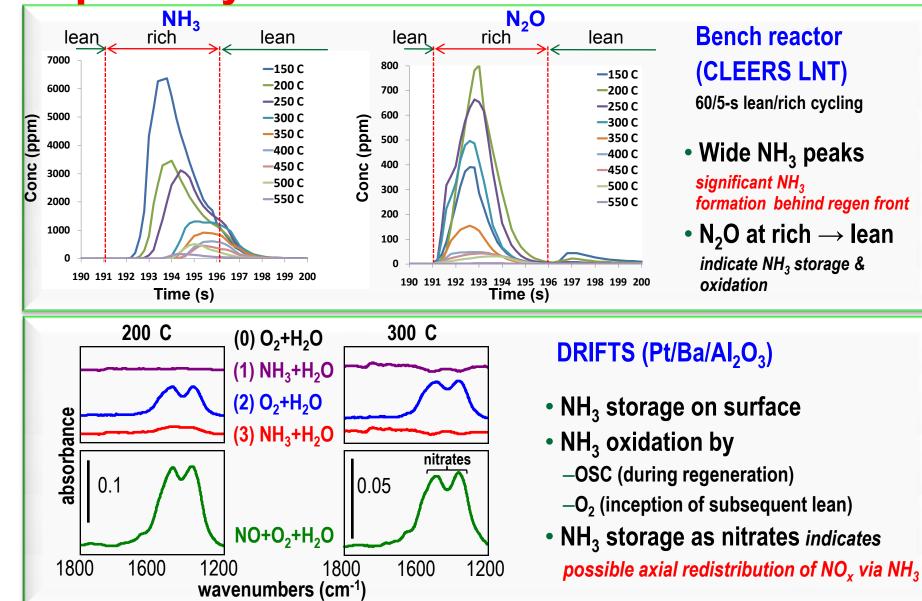
- NH₃ important for stand-alone LNT (slip control) & LNT-SCR
- Recent ORNL chassis study of a European lean GDI (09 BMW) shows significant $\rm NH_3$ slip can occur
- Current LNT models have limited NH₃ capability
 - Generally not tracking NH₃ profiles
 - Recent addition of 2-step mechanism: $NO_x + H_2 \rightarrow NH_3$; $NH_3 + NO_x \rightarrow N_2$
- S study (see previous 2 slides) highlights importance of spatiotemporal reactions & surface species

• This FY, we initiated systematic study of NH_3 on CLEERS LNT

-Spatiotemporal resolution of reaction distributions

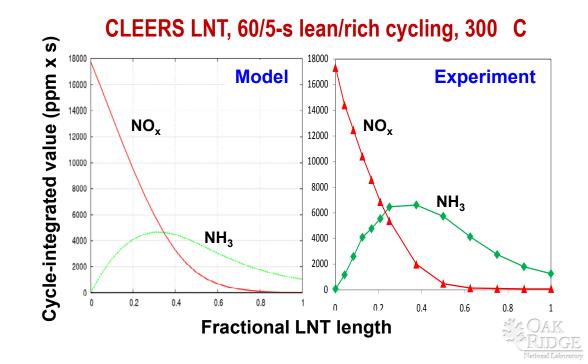
- Bench reactor, HS-FTIR (temporal), UEGO (temporal), SpaciMS (spatial)
- Type of reductant (e.g., HC impact), temperature
- -Transient NH₃ surface chemistry
 - DRIFTS reactor
 - NH₃ interaction with catalyst surface (e.g., OSC)

-Complementary to U Houston DOE project


- Focused on coupled LNT-SCR synergy mechanisms
- Catalyst formulation effects

Automated bench reactor

Result Highlights: LNT Research (4/5) - Initial results reveal some key NH₃ features to be captured by models


Result Highlights: LNT Research (5/5)

- LNT models are being used to better understand NH₃ & S chemistry and evaluate system impact

- Further SNL collaboration on microkinetic model (see ACE035 talk)
 - Implemented lean/rich cycling
 - Initial work on sulfation/desulfation
- Developed a global model to enable faster simulations than microkinetic model
 - Experimental findings used to improve NH₃ prediction

Global model features:

- Catalytic reactions on Pt sites
 - No storage
 - Global rate expressions
 - Inhibition terms where necessary
- NO_x storage on fast (near Pt) and bulk BaCO₃ sites
 - Carbonates, peroxides, nitrites, nitrates, bulk nitrates
 - -Oxygen storage on CeO₂
- NO_x release rate adjusted using experimental data \rightarrow better NH₃ match
- Currently isothermal

18 Managed by UT-Battelle for the U.S. Department of Energy

Collaborations

Partners

- National labs: ORNL-High Temperature Materials Lab, Pacific Northwest National Lab, Sandia National Labs.
- Universities: Kentucky, Houston, ICT Prague (summer research by Dr. Kočí at ORNL), Chalmers (students from Prof. Olsson's group)
- Industry: Cummins, Navistar, Ford, Umicore, BASF, other CLEERS Focus Group members and DOE Diesel Crosscut Team

Technology Transfer

- 18+ publications & presentations (dissemination of DOE-funded research outcome via high visibility forums: NAM, SAE, int'l journals etc.)
- SCR lab protocol publicly proposed
- LNT & SCR models used for DOE Vehicle & System HEV/PHEV Simulations (FY10 FreedomCAR Highlight)

Sandia

Data, systems impact guidance for PNNL & SNL activities

Future Work

- CLEERS Coordination (8745)
 - Planning Committee, Focus Groups, Workshop & website
 - Synchronizing ORNL-PNNL-SNL R&D
 - Priority Survey in 2011 (every 2 years)
 - Basic data & model exchange between CLEERS & other VTP projects

• LNT & SCR Kinetics (8746)

- LNT kinetics, durability (major focus on NH₃ chemistry)
 - Bench reactor studies (reductant type, HC impact)
 - Spatiotemporal analysis (SpaciMS, high-speed FTIR, DRIFTS)
 - Model NH₃ spatiotemporal profiles (with SNL)
 - Model LNT sulfation (with SNL)
 - CLEERS reference catalyst vs. latest European lean GDI (09 BMW)
- Urea-SCR kinetics (HC poisoning)
 - CLEERS lab protocol implementation
 - DRIFTS surface analysis with reference catalysts (Fe vs. Cu)
 - PNNL collaboration

Summary

- Relevance
 - Assist DOE in coordinating & conducting R&D enabling development of energy & cost effective lean emissions control technologies
- Approach
 - Planning Committee, Focus Groups, website, Workshops, polling, Crosscut updates, data & model exchanges
 - Multi-scale lab R&D on commercial & model LNT & urea-SCR catalysts under relevant conditions (modeling & experiments)
- Technical Accomplishments
 - Monthly Focus meetings, website, 12th & 2010 Workshops, Crosscut reports, systems implementation of CLEERS data & models
 - Fundamental understanding and modeling of practically relevant urea-SCR & LNT catalysts
- Collaborations
 - Non-proprietary collaborations among industry, national labs, universities, and foreign institutions through CLEERS organizational structure
 - Collaboration with other VTP projects (e.g., DOE-system simulations, U. Houston)
 - Extensive publications/presentations
- Plans for Next Fiscal Year
 - Planning Committee, Focus Groups, Crosscut reports, website, Workshops, priority poll, VTP leveraging
 - LNT modeling of NH_3 , N_2O & HC impact via spatiotemporal chemistry
 - NH₃-SCR modeling supported by DRIFTS and CLEERS lab protocol

