Combination and Integration of DPF – SCR Aftertreatment Technologies

P.I. – Kenneth G. Rappé Darrell R. Herling John Lee, John Frye, Gary Maupin Pacific Northwest National Laboratory (PNNL) June 9, 2010

ACE025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Start Oct 2008
- Finish Oct 2012
- 37% complete

Budget

- Total project funding
 - \$1.6M DOE share
 - \$1.6M I.K. Contractor contr.
- \$200K received in FY09
- \$400K received in FY10

Barriers

- Barriers addressed
 - Heavy truck thermal efficiency
 - Aftertreatment cost
 - Combined NOx and PM emissions

Partners

- Primary Partner: PACCAR
 - PACCAR Technical Center
- DAF Trucks (operating as an extension of PACCAR)
 - Utrecht Univ. operating as a supportive entity to DAF
- Project Lead: PNNL

OBJECTIVES

Fundamentally understand the integration of SCR & DPF technologies to provide a pathway to the next generation of emissions control systems

- Probe interaction of DPF-SCR couples to better understand the optimization of the coupled units
- Determine system limitations, define basic requirements for efficient onboard packaging and integration with engine
- Develop an understand of ...
 - optimal loading of SCR catalyst for maximizing NOx reduction while maintaining acceptable △P and filtration performance.
 - proper thermal management of the system for regenerating the DPF without negative impacts on the SCR catalyst.
 - SCR aging, including effect of ...
 - locally higher temperatures of soot combustion.
 - active site blockage.
 - zeolite structure integrity.
 - metal migration.

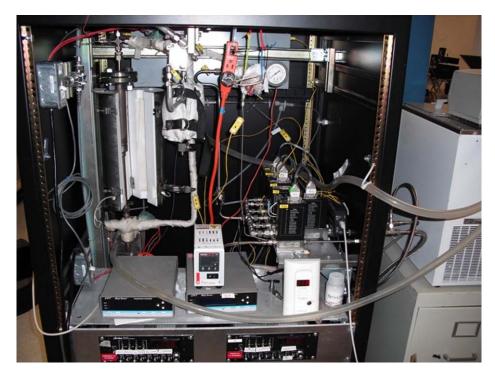
- Identify approach to system integration, metrics by which success will be gauged (4 mo.) – complete
- Develop technique for integration of SCR active phase into wall-flow configuration – complete
- Demonstrate integrated DPF/SCR on 2 cm dia. wall-flow filter with synthetic diesel exhaust stream (15 mo.) – challenges with SCR active phase
- Demonstrate integrated DPF/SCR on 2 cm dia. elevated porosity filter (19 mo.) – challenges with SCR active phase
- Prepare integrated DPF/SCR on 15 cm dia. filter (30 mo.)
- Discussions with manufacturer on pathway to fabricate integrated DPF/SCR for vehicle demonstration (33 mo.)
- Demonstrate integrated DPF/SCR on 15 cm dia. wall-flow filter on diesel engine slip stream (39 mo.)

APPROACH/STRATEGY

Flow restriction concerns

- $\Delta P: SCR/DPF > SCR + cDPF$
- Back pressure dependant on filter type & washcoat loading
- Focus on different filter substrates & SCR washcoat loadings to maximize NOx reduction performance & minimize flow restriction
- Optimal SCR catalyst loading
 - Versus effect on permeability and DPF filtration performance
- Thermal management
 - Minimizing impact on SCR catalyst
- Evaluation SCR catalyst impact via detailed system interrogations (Utrecht)
- Address NOx conversion with accumulated soot
 - Active site blockage, soot-combustion facilitated thermal aging, etc.

Detailed filter substrate evaluation


- Cordierite, SiC, Al₂TiO₅, ACM, SiN
- Key attributes for integrated system
 - Pore characteristics: open, uniform structure w/ good mech. strength
 - Thermal conductivity, heat capacity

Cordierite – primary

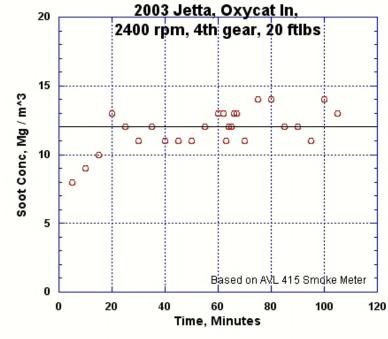
- Fast warm-up
- Lower melting point
- Less controlled pore structure
- Silicon Carbide (SiC) secondary
 - Increased cost (low TSP mitigated by segmentation)
 - Higher heat capacity (higher soot loading, longer warm-up)
 - Higher thermal conductivity (better SCR protection?)
 - Favorable uniform & open pore network

- Sample core testing capability
 - For evaluating sample core performance
 - integrated system performance
 - activity regeneration activity
 - Regeneration strategy development/evaluation

Pacific Northwest

DOE Merit Review

June 9, 2010

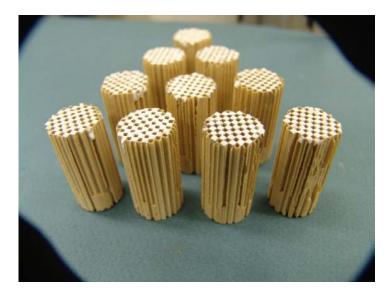

DOE Merit Review June 9, 2010

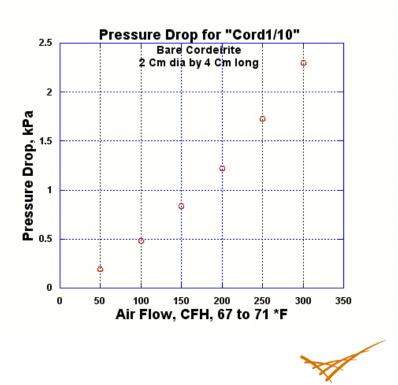
Sample Soot Loading

Loading filters with 2003 VW Jetta exhaust

Loading based on AVL 415 Smoke Meter measurements

- Targeting engine condition producing ~12 mg/m³
- Good reproducibility



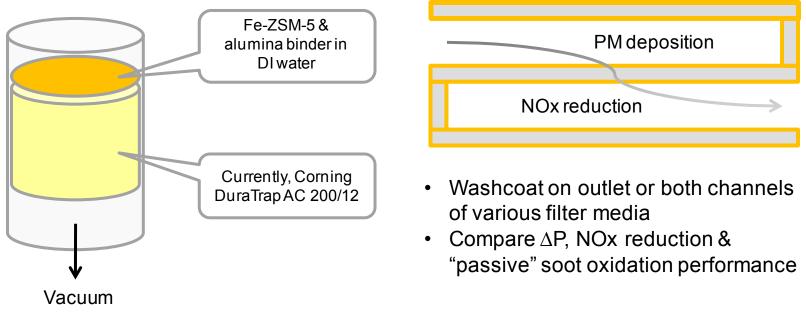


DOE Merit Review June 9, 2010

Sample Core Preparation

- Sample cores prepared for coating & lab reactor testing
- Coating efforts guided by back-pressure measurements
 - Washcoat and measure △P increase

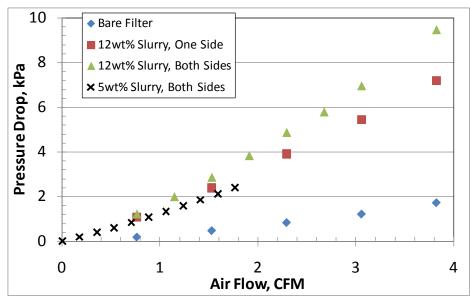
PNNL DPF – SCR AFTERTREATMENT INTEGRATION


Pacific Northwest NATIONAL LABORATORY

DOE Merit Review June 9, 2010

Washcoating Plan

Sample preparation method development


- Highly iterative coating process (pull-blow-dry-measure)
- Vacuum suction method

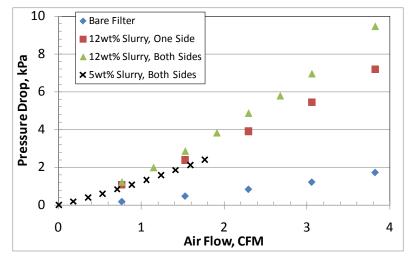
DOE Merit Review June 9, 2010

Filter Core Coating – blank zeolite

- 12 wt % solids slurry
 - Coating one side 5.73 wt% loading 32 g/L catalyst incorporated
 - Coating both sides 10.24 wt% loading 60 g/L catalyst incorporated
- 5 wt % solids slurry
 - Coating both sides 5.51 wt% loading 31 g/L catalyst incorporated
- Method adjustment → improved filter permeability

Pacific Northwest

Filter Pressure Drop Scaling

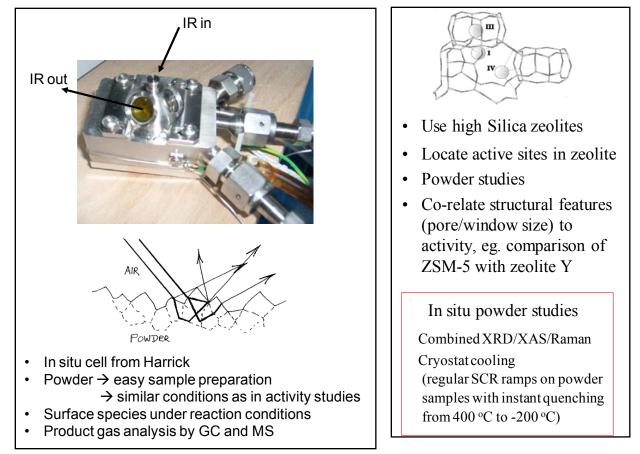

- $\blacktriangleright \Delta P = \Delta P_{\text{filter wall}} + \Delta P_{\text{soot layer}} + \Delta P_{\text{inlet/outlet channel}} + \Delta P_{\text{entrance/exit}}$
 - Clean filter: $\Delta P_{\text{soot layer}} = 0$
 - ∆P_{entrance/exit} typically O(10⁻²-10⁻³); can be neglected with minimal consequence
 - <u>AP_{inlet/outlet}</u> a function of filter characteristics and exhaust gas conditions; unaffected by filter wall conditions
 - $\Delta P_{\text{filter wall}}$ a function of filter wall permeability, k_0

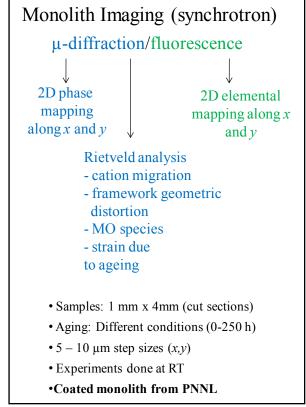
Approach to scaling pressure drop

- ▶ Catalyst wash coat \rightarrow decreased permeability (k_{θ}) through filter wall
- Full-size filter pressure drop predicted via quantitatively determining the effect of the catalyst wash coat on the filter wall permeability

Filter Pressure Drop Scaling – 900 SCFM, 450°C

Filter wall permeability, k_{θ} (200 cpsi, 12 mil wall)


- ~ $5.3 \times 10^{-13} m^2$ for a typical fresh cordierite filter (~48% porosity)
 - Filter wall $\Delta P = 1.13 \text{ kPa}$
 - Inlet/outlet channel effects $\Delta P = 4.17 \text{ kPa}$
 - ~ $1.56 \times 10^{-13} m^2$ for 12wt% slurry coating (60 g/L catalyst loading)
 - Filter wall –
 - Inlet/outlet channel effects –



COLLABORATIONS

University of Utrecht

In-situ examinations, active site analysis, system aging analysis

FUTURE WORK (short term)

Pacific Northwes

NATIONAL LABORATORY

- Method development with SCR active phase
 - Employing 200 cpsi, 12 mil wall cordierite DPF
 - Efforts guided by ΔP measurements, sample mass increase
 - Testing of samples to include
 - SCR performance (fresh)
 - DP, activity versus soot loading
 - Regeneration investigations (active & passive)
 - Hydrothermal aging, SCR performance
- Method development with elevated porosity DPF

SCR active phase

- Preference is to use vendor-supplied commercial catalyst
- To date, significant challenges in acquisition has slowed program progress substantially
- Currently attempting to move forward with internal formulation

- Method developed for sample preparation of coupled SCR – DPF systems
- Key parameter is maximizing SCR active phase loading with acceptable filter wall permeability
- Tools are in place for detailed interrogation of active coupled systems, including:
 - SCR performance
 - Soot loading
 - Regeneration investigations
- Method and proper metrics will allow scale-up of coupled systems for ultimate engine demonstration

