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Overview
TIMELINE

 Start:  Oct. 1, 2010
 End:  Sept. 30, 2012
 10% complete

BUDGET
 Total project funding

 DOE:  $2,217,317
 UH & partners: $687,439

 Funding received
 FY10: $637,728

BARRIERS/TARGETS
 Reduce NOx to < 0.2 g/bhp-h 

for heavy-duty diesel by 2015
 Reduce PM to < 0.01 g/bhp-h 

for heavy-duty diesel by 2015
 Increase truck efficiency by 

20% over current levels by 2015

PARTNERS
 U. Houston (lead)
 Center for Applied Energy 

(U. Kentucky)
 Ford Motor Company
 BASF Catalysts LLC
 Oak Ridge National Lab
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LNT/SCR Research:  Observations

 Synergistic benefits of LNT/SCR have been 
demonstrated

 Most previous studies show increased NOx 
conversion by adding SCR unit downstream of LNT

 Mechanisms of LNT/SCR synergies not understood 
or characterized

 Understanding captured in quantitative models will 
lead to optimal LNT/SCR designs & operating 
strategies
 Reduced PGM, improved fuel utilization
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Overall Goal & Impact of Project

Goal: Identify the NOx reduction mechanisms 
operative in LNT (Lean NOx Traps) and  in situ 
SCR (Selective Catalytic Reduction) catalysts, 
and to use this knowledge to design optimized 
LNT-SCR systems in terms of catalyst 
architecture and operating strategies.

Impact: Progress towards goal will accelerate 
the deployment of a non-urea NOx reduction 
technology for diesel vehicles.

4



NSR/SCR Catalyst Architectures

Several catalyst formulations & architectures 
to be evaluated in this project

Serial two-zone LNT/SCR

Segmented multi-zone LNT/SCR

Two-layer LNT/SCR

Mixed-layer LNT/SCR

Two-layer SCR/LNT

LNT

SCR

LNT-SCR

Monolith

Support
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Collaborative Project Team:  
Fundamentals to Applications
 University of Houston

 Mike Harold (PI), Vemuri Balakotaiah, Dan Luss 
 Catalytic engineering; NOx storage & reduction, DPF research, Diesel emissions

 University of Kentucky - Center for Applied Energy
 Mark Crocker (CoPI)
 Catalytic materials;  Lean NOx reduction & catalysis research

 Oak Ridge National Laboratory
 Jae-Soon Choi
 Extensive R&D in emission aftertreatment

 BASF Catalysts LLC (formerly Engelhard Inc.)
 C.Z. Wan, Stan Roth 
 International leader in emission catalysts
 LNT work builds off UH – BASF collaborations

 Ford Motor Company
 Bob McCabe, Mark Dearth, Joe Theis
 OEM provides path to application 
 UH & CAER/UK have had close collaborations with Ford



Approach:  Team Participants

Kinetic 

Data

UH

• LNT & SCR mechanism 
& kinetics (BSR3, TAP)

• LNT-SCR segmented 
performance & 
optimization (BSR4, 
engine dyno)

• LNT & SCR 
microkinetic modeling & 
parameter estimation

• LNT-SCR segmented & 
double-layer reactor 
modeling

• LNT-SCR system 
optimization & 
integration (engine dyno, 
BSR4)

BASF Catalysts

• Catalyst synthesis

• LNT & SCR catalyst 
expertise

Ford

• Desulfation & 
durability testing (BSR2, 
chassis dyno)

• LNT, SCR, LNT-SCR 
performance & 
application expertise

• LNT-SCR systems 
integration (chassis 
dyno)

CAER

• Catalyst formulation & 
characterization

• LNT ammonia 
generation (BSR1)

• LNT-SCR serial & 
double-layer (BSR)

• LNT-SCR aging (BSR)

Catalysts

Perf. 

Data

Spatio-

Temp.

Data

Industry “Know-how”

Data

Perf. 

Data

DRIFTS

Data

Reports, Publications, Presentations, Graduates Commercialization

ORNL

• Catalyst characterization

• LNT ammonia generation 
(SpaciMS)

• LNT-SCR mechanism 
(DRIFTS)

• LNT-SCR serial & double-
layer performance (SpaciMS)
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Project Deliverables:  Phase 1

 Identify the main NOx conversion mechanisms 
in LNT-SCR systems

 Determine LNT catalyst composition effects 
and operating conditions for maximizing in 
situ ammonia generation, supported by 
model predictions

 Establish the kinetics of primary reactions 
during NOx x  storage and reduction and 
ammonia-based SCR
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Schedule of Tasks:  Phase 1
Phase 1 Tasks Year 1 Year 2

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
1.1: Project management & planning 
1.2:  Reactor study of non-NH3 NOx
reduction mechanism
1.3:  DRIFTS study of non-NH3 NOx
reduction mechanism
1.4: TAP study of NOx reduction with 
H2/CO/C3H6 on LNT
1.5: Kinetics study of NOx storage & 
reduction with H2/CO/C3H6 on LNT:

1.5.1: Steady-state kinetics of reactions on LNT

1.5.2: NOx storage and NO oxidation on LNT

1.6: Parametric study of LNT NOx reduction 
selectivity
1.7: Development of microkinetic models

1.8: Development of low-dimensional 
models
1.9: Phase 1 reporting
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Schedule of Tasks:  Phase 2

Phase 2 Tasks Year 2 Year 3
Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

2.1: Spatiotemporal study of LNT NOx
reduction selectivity 
2.2: Isotopic TAP study of NOx reduction on 
LNT & SCR  
2.3: Transient kinetics of NOx reduction on 
LNT & SCR
2.4:  Kinetics of transient NOx reduction w/ 
NH3 on SCR
2.5:  Examine effect of PGM/ceria loading on 
LNT-SCR
2.6: Prepare double layer LNT-SCR catalysts

2.7: Spatiotemporal study of LNT-SCR 
performance
2.8: Sulfation-desulfation study of LNT-SCR 
system
2.9: Modeling and simulation studies

2.10: Phase 2 reporting
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Project Approach & Tools
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LNT & SCR 
Kinetics 

Experiments

LNT & SCR 
Kinetic 
Models

LNT & 
LNT/SCR 

Bench-scale 
Reactors

Low-D LNT & 
SCR Reactor 

Models

Vehicle Tests 
of New 

LNT/SCR 
Designs 

Premise:  Systematic approach  and state-of-art 
tools leads to fundamental understanding  & 
optimized designs 

• Catalyst synthesis      
& characterization

• Bench reactors
• FTIR, QMS, CIMS
• SpaciMS
• TAP reactor
• Dynamometers



Ammonia (NH3) out of LNT (JM07307) under 60/5 (C3H6)
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• Enhanced conversion from 
SCR cat at temps below 
225C and above 450C 
(where little or no NH3 is 
formed or expected to 
store on the SCR cat)

• Data suggest an additional 
non-ammonia NOx 
conversion mechanism over 
the SCR catalyst.
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Vehicle Testing: Steady-Speed
NOx & NH3 concentration during a steady state 

(55mph, catalyst temperature at 380oC (lean) and 430oC(rich))
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Experimental Results (Task 1.2; Ford)
 No NH3 observed between LNT/SCR in some cases:  This rules out NH3-SCR 

due to NH3 storage (and no lean LNTNH3 production!).
 No R-NO observed between LNT/SCR:  This rules out nitromethane 

production on the LNT and storage on the SCR.
 SCR reduces NO and NO2 for 100-300 sec after 2-5 sec rich period: 

Indicates a stored  or in situ reactant.
 NOx reduction over the SCR requires periodic rich purge: Reductants 

required to create reactive species in LNT.
 N-containing Reductant is produced on LNT, and it gives no signal in FID 

and NOx analyzers:

HCNO is likeliest possibility.

Production favored by lower 
temperatures and reduced 
oxidation/storage 
performance of LNT 

Some N-containing
Species produced by LNT, 
as evidenced by
NOx remake post LNT
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Formation of HNCO (M/Z 43) with Ethylene
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Reactor Studies at UK CAER
 LNT-SCR studies:

- reproduce non-NH3 NOx conversion route observed by Ford (using
non-proprietary LNT catalyst)

- identify optimal experimental
conditions for subsequent in situ 
DRIFTS studies

 Low PGM-loaded LNT used, with
Cu-zeolite SCR catalyst

 Gas sampling at three positions 

 SpaciMS studies (Ford, ORNL):
- gain insights into the factors controlling
NH3 emissions from LNT catalysts:
underlying chemistry, effect of process
parameters, effect of catalyst composition

16



NOx and NH3 Conversion in LNT-SCR System:
Evidence for non-NH3 NOx Conversion Pathway

(Tasks 1.2, 1.6)
Rich phase reductant:
1% CO, 0.3% H2

• Observations first made by Ford confirmed at UK CAER: 
Benefit of SCR catalyst most apparent when hydrocarbon (propene) is present 
→ SCR catalyst is able to utilize propene - or a derivative thereof - as a reductant 

Rich phase reductant:
1% CO, 0.3% H2, 3334 ppm C3H6
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NOx Conversion in the LNT-SCR System: 
Results for Different Reductants (Task 2.7)

Reductant Total NOx
conversion 
over SCR 

catalyst (%)

NOx conversion
over SCR catalyst 

during lean 
phase (%) 

NOx conversion
over SCR 

catalyst during 
rich phase (%)

CO/H2/C2H4 6.9 5.8 1.1

CO/H2/C3H6 15.3 5.9 9.6

CO/H2 3.6 3.45 0.15

C2H4 3.3 2.4 0.9

C3H6 8.0 0.8 7.2

CO/H2/C3H6 as reductant, 
lean-rich cycling:

LNT only

LNT+SCR

When propene is added as 
rich phase reductant, NOx 
conversion over SCR 
catalyst mainly occurs in 
rich phase (as opposed to 
lean phase for conventional 
NH3 route) 

233 oC
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LNT Modeling (UH; Tasks 1.7, 1.8)
 LNT reactor models completed for Pt/BaO, 

H2 as reductant
Microkinetic formulation: storage & reduction
Global kinetic model formulation accounts for 

particle size effects, NH3/N2O/N2 selectivity

21

Model 
Experiment



NH3 SCR on Fe-Zeolite (UH; Task 2.4)
500 ppm NO, 500 ppm NH3, 5% O2
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Washcoat:  

50μm

Fe  4 wt.%

Ti: 1.5% wt.%

Al: 4.5% wt.%

Si: 38% wt.%

Steady-state & transient            
tests & intrinsic kinetics  
Fe- & Cu-zeolite catalysts:
provided & synthesized



NH3 SCR Kinetics on Fe-Zeolite
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Standard SCR:

4 NH3 + 4 NO + O2  4 N2 + 6 H2O

Kinetic Rate form:
-RNO = Ae-E/RT*[NO]1 [NH3]-0.3 [O2]0.56

E ~ 42 kJ/mol

SCR rate: positive order in NO & O2, 
inhibited by NH3



Activities Planned:  4QFY10, FY11
 Spatio-temporal LNT data to be collected for comparison to 

global model with focus on NH3

 TAP study of SCR, NSR with H2 & CO 
 In situ DRIFTS study at ORNL: identification of possible 

CaHbNcOd species formed on LNT/SCR catalysts
 Complete LNT-SCR reactor studies, including parametric 

study of NH3 formation over model LNT catalysts varying in 
ceria content

 Isotopic 15NO bench & TAP reactor experiments
 Development of kinetic & reactor models

 SCR microkinetic model & SCR reactor with comparison to data
 Integration of LNT & SCR global kinetic based reactor models  
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Summary
 Good progress on several fronts
 Non-NH3 SCR mechanism important
 Conditions for NH3 generation identified from spatio-

temporal data
 SCR kinetics for Fe-zeolite
 LNT micro & global kinetics & reactor models

 Next steps to focus on LNT/SCR data & 
modeling, DRIFTS & TAP studies
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