Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

Mike Harold, PI University of Houston June 10, 2010

ACE029

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE

- Start: Oct. 1, 2010
- End: Sept. 30, 2012
- 10% complete

BUDGET

Total project funding
 DOE: \$2,217,317
 UH & partners: \$687,439
 Funding received
 FY10: \$637,728

BARRIERS/TARGETS

- Reduce NOx to < 0.2 g/bhp-h for heavy-duty diesel by 2015
- Reduce PM to < 0.01 g/bhp-h for heavy-duty diesel by 2015
- Increase truck efficiency by 20% over current levels by 2015

PARTNERS

- U. Houston (lead)
- Center for Applied Energy
 - (U. Kentucky)
- Ford Motor Company
- BASF Catalysts LLC
- Oak Ridge National Lab

LNT/SCR Research: Observations

- Synergistic benefits of LNT/SCR have been demonstrated
- Most previous studies show increased NOx conversion by adding SCR unit downstream of LNT
- Mechanisms of LNT/SCR synergies not understood or characterized
- Understanding captured in quantitative models will lead to optimal LNT/SCR designs & operating strategies
 - Reduced PGM, improved fuel utilization

Overall Goal & Impact of Project

<u>Goal:</u> Identify the NO*x* reduction mechanisms operative in LNT (Lean NOx Traps) and *in situ* SCR (Selective Catalytic Reduction) catalysts, and to use this knowledge to design optimized LNT-SCR systems in terms of catalyst architecture and operating strategies.

<u>Impact:</u> Progress towards goal will accelerate the deployment of a non-urea NOx reduction technology for diesel vehicles.

NSR/SCR Catalyst Architectures

Serial two-zone LNT/SCR

Segmented multi-zone LNT/SCR

Two-layer LNT/SCR

Two-layer SCR/LNT

Mixed-layer LNT/SCR

Several catalyst formulations & architectures to be evaluated in this project

Collaborative Project Team: Fundamentals to Applications

University of Houston

- Mike Harold (PI), Vemuri Balakotaiah, Dan Luss
- Catalytic engineering; NOx storage & reduction, DPF research, Diesel emissions

University of Kentucky - Center for Applied Energy

- Mark Crocker (CoPI)
- Catalytic materials; Lean NOx reduction & catalysis research

Oak Ridge National Laboratory

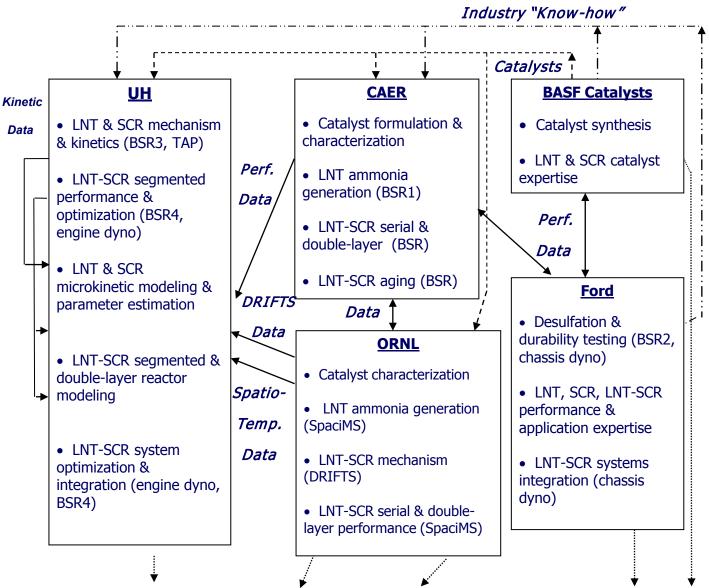
- Jae-Soon Choi
- Extensive R&D in emission aftertreatment

■ BASF Catalysts LLC (formerly Engelhard Inc.)

- C.Z. Wan, Stan Roth
- International leader in emission catalysts
- LNT work builds off UH BASF collaborations

Ford Motor Company

- Bob McCabe, Mark Dearth, Joe Theis
- OEM provides path to application
- UH & CAER/UK have had close collaborations with Ford



Approach: Team Participants

Reports, Publications, Presentations, Graduates

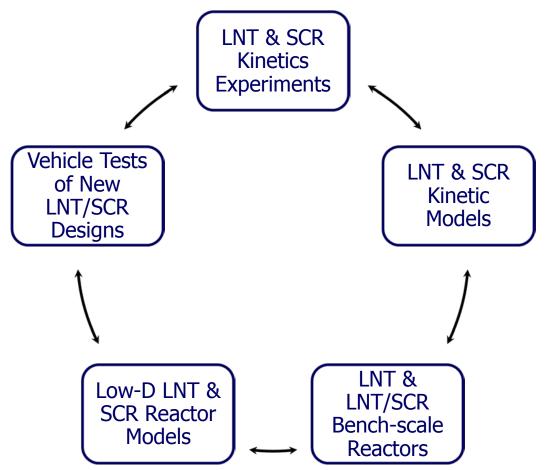
Commercialization

Project Deliverables: Phase 1

- Identify the main NO conversion mechanisms in LNT-SCR systems
- Determine LNT catalyst composition effects and operating conditions for maximizing *in situ* ammonia generation, supported by model predictions
- Establish the kinetics of primary reactions during NOx storage and reduction and ammonia-based SCR

Schedule of Tasks: Phase 1

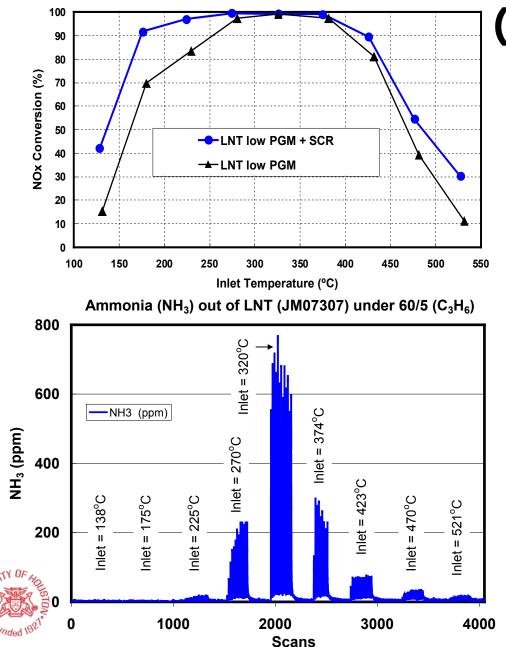
Phase 1 Tasks	Year 1				Year 2				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
1.1: Project management & planning									
1.2: Reactor study of non-NH ₃ NO _{x}									
reduction mechanism									
1.3: DRIFTS study of non-NH ₃ NO _{x}									
reduction mechanism									
1.4: TAP study of NO_x reduction with									
$H_2/CO/C_3H_6$ on LNT									
1.5: Kinetics study of NO_x storage &									
reduction with $H_2/CO/C_3H_6$ on LNT:									
1.5.1: Steady-state kinetics of reactions on LNT									
1.5.2: NO_x storage and NO oxidation on LNT									
1.6: Parametric study of LNT NO_x reduction									
selectivity									
1.7: Development of microkinetic models									
1.8: Development of low-dimensional				//////					
models									
1.9: Phase 1 reporting									


(*Red* indicates in progress; *indicates complete*)

Schedule of Tasks: Phase 2

Phase 2 Tasks	Year 2			Year 3				
	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4
2.1: Spatiotemporal study of LNT NO_x reduction selectivity								
2.2: Isotopic TAP study of NO_x reduction on LNT & SCR								
2.3: Transient kinetics of NO_x reduction on LNT & SCR								
2.4: Kinetics of transient NO_x reduction w/ NH_3 on SCR								
2.5: Examine effect of PGM/ceria loading on LNT-SCR			I]					
2.6: Prepare double layer LNT-SCR catalysts			I					
2.7: Spatiotemporal study of LNT-SCR performance								
2.8: Sulfation-desulfation study of LNT-SCR system								
2.9: Modeling and simulation studies								
2.10: Phase 2 reporting								

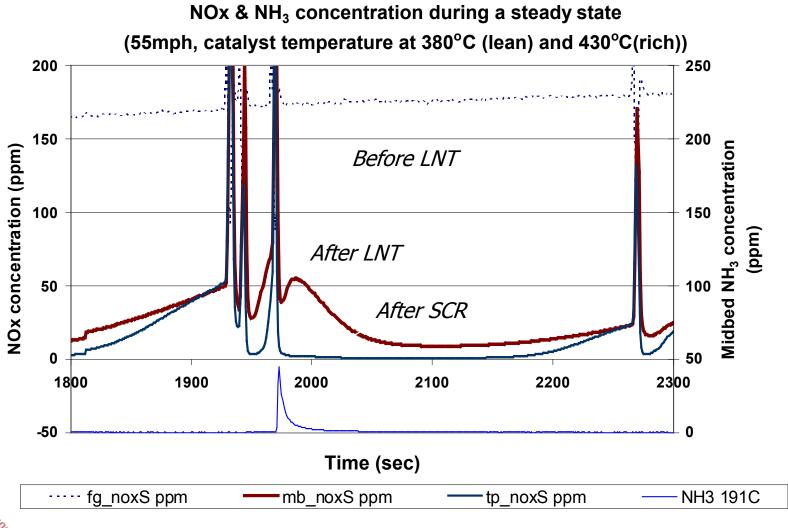
Project Approach & Tools



- Catalyst synthesis
 & characterization
- Bench reactors
- FTIR, QMS, CIMS
- SpaciMS
- TAP reactor
- Dynamometers

Premise: Systematic approach and state-of-art tools leads to fundamental understanding & optimized designs

Non-Ammonia NOx Reduction Mechanism

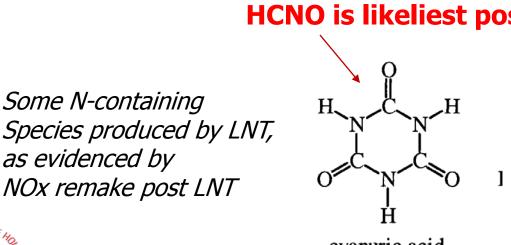

(Ford; Tasks 1.2, 2.7)

*Lab reactor data suggest a non-NH*₃ *reduction mechanism*

- Enhanced conversion from SCR cat at temps below 225C and above 450C (where little or no NH3 is formed or expected to store on the SCR cat)
- Data suggest an additional non-ammonia NOx conversion mechanism over the SCR catalyst.

Lab data: 70K simulated 3-mode Lab aging; 60sL/5sR eval. cycles

Vehicle Testing: Steady-Speed



NH₃ produced cannot explain extra NOx conversion by SCR

Experimental Results (Task 1.2; Ford)

- No NH_3 observed between LNT/SCR in some cases: This rules out NH_3 -SCR due to NH_3 storage (and no lean LNTNH3 production!).
- No R-NO observed between LNT/SCR: This rules out nitromethane production on the LNT and storage on the SCR.
- SCR reduces NO and NO₂ for 100-300 sec after 2-5 sec rich period: Indicates a stored or in situ reactant.
- NOx reduction over the SCR requires periodic rich purge: Reductants required to create reactive species in LNT.
- N-containing Reductant is produced on LNT, and it gives no signal in FID and NOx analyzers:

Production favored by lower temperatures and reduced oxidation/storage performance of LNT

as evidenced by

HCNO is likeliest possibility.

cyanuric acid

HNCO Observed in Lab Reactor Under

Lean/Rich Cycling Conditions (no H₂0; CO₂)

-NH3 ppm NO ppm NO2 ppm hcno ppm ethylene ppm propene ppm 25 5000 4000 Propylene, NO, NO2. 20 3000 2000 estimated ppm HNCO Ethylene, 15 1000 Ω ę 11020 11120 11000 11040 11060 11080 11100 11140 11160 11180 11200 mdd 10 -1000 stimated -2000 5 -3000 -4000 0 -5000

Formation of HNCO (M/Z 43) with Ethylene

15

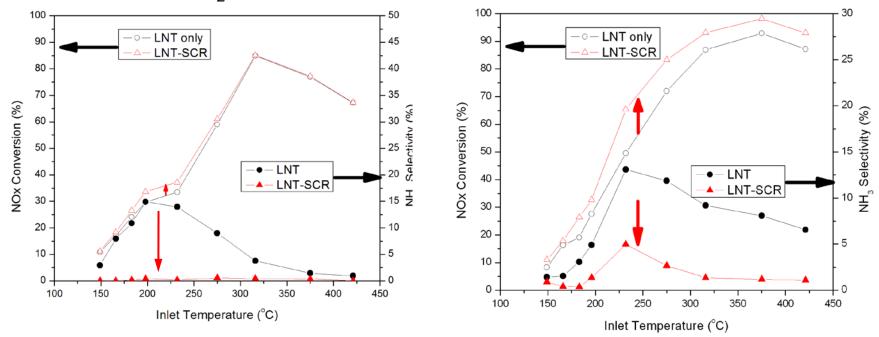
Reactor Studies at UK CAER

LNT-SCR studies:

- reproduce non-NH₃ NOx conversion route observed by Ford (using non-proprietary LNT catalyst)
- identify optimal experimental conditions for subsequent *in situ* DRIFTS studies
- Low PGM-loaded LNT used, with Cu-zeolite SCR catalyst
- Gas sampling at three positions

SpaciMS studies (Ford, ORNL):

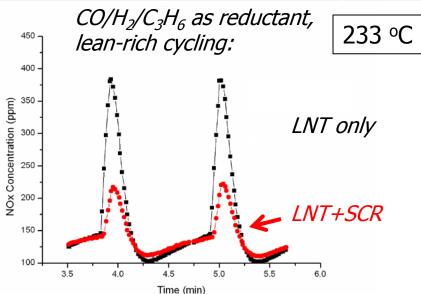
 gain insights into the factors controlling NH₃ emissions from LNT catalysts: underlying chemistry, effect of process parameters, effect of catalyst composition



NOx and NH₃ Conversion in LNT-SCR System: Evidence for non-NH₃ NOx Conversion Pathway (Tasks 1.2, 1.6)

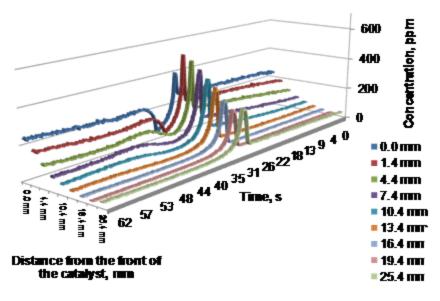
*Rich phase reductant: 1% CO, 0.3% H*₂

Rich phase reductant: 1% CO, 0.3% H_2 , 3334 ppm C_3H_6



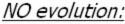
 Observations first made by Ford contirmed at UK CAER: Benefit of SCR catalyst most apparent when hydrocarbon (propene) is present
 → SCR catalyst is able to utilize propene - or a derivative thereof - as a reductant

NOx Conversion in the LNT-SCR System: Results for Different Reductants (Task 2.7)

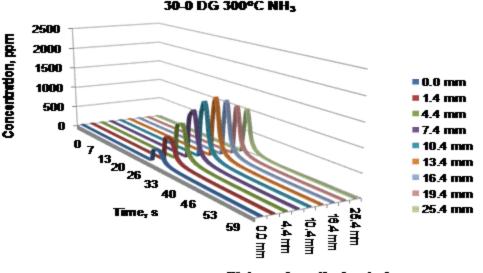

Reductant	Total NOx conversion over SCR catalyst (%)	NOx conversion over SCR catalyst during lean phase (%)	NOx conversion over SCR catalyst during rich phase (%)
$CO/H_2/C_2H_4$	6.9	5.8	1.1
$CO/H_2/C_3H_6$	15.3	5.9	9.6
CO/H ₂	3.6	3.45	0.15
C ₂ H ₄	3.3	2.4	0.9
C ₃ H ₆	8.0	0.8	7.2

When propene is added as rich phase reductant, NOx conversion over SCR catalyst mainly occurs in <u>rich</u> phase (as opposed to lean phase for conventional NH₃ route)

SpaciMS Study of NH₃ Evolution in LNT Catalysts (1): <u>Degreened</u> Catalyst, Low OSC (Task 1.6)

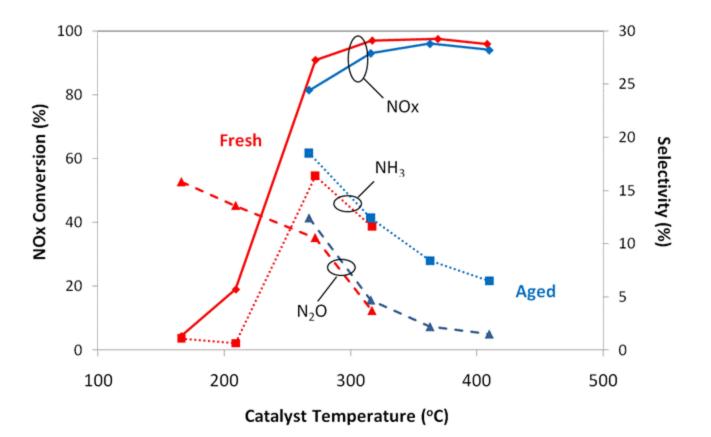

30-0 DG 300°C NO

<u>NH₃ evolution:</u>


NH₃ concentration peaks near middle of catalyst:

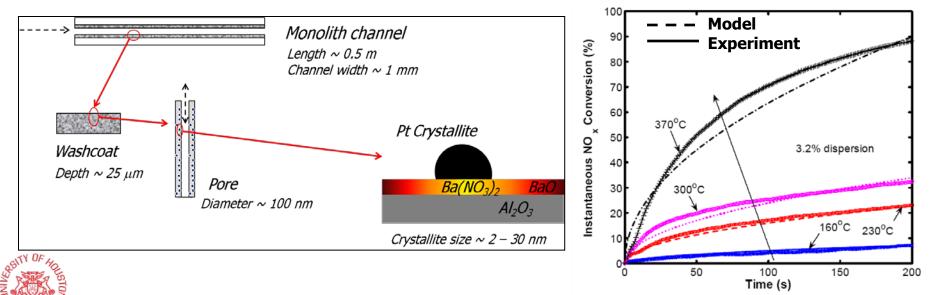
- possible correlation with H₂ (from prior work)
- *NH*₃ released to gas phase subsequently undergoes consumption (to some degree) downstream

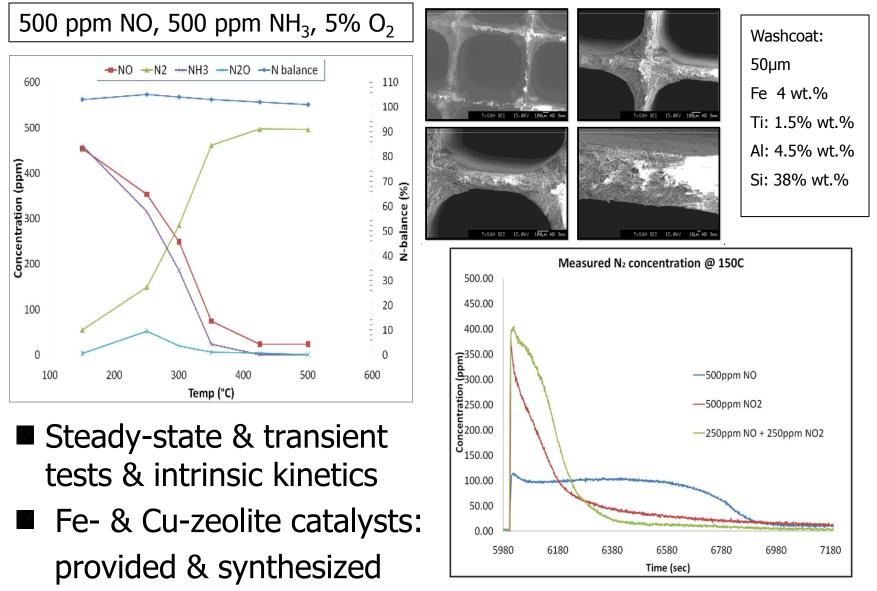
NO concentration peaks near front of catalyst: - NOx storage mainly in front portion


- NOx released to gas phase subsequently undergoes consumption (to some degree) downstream

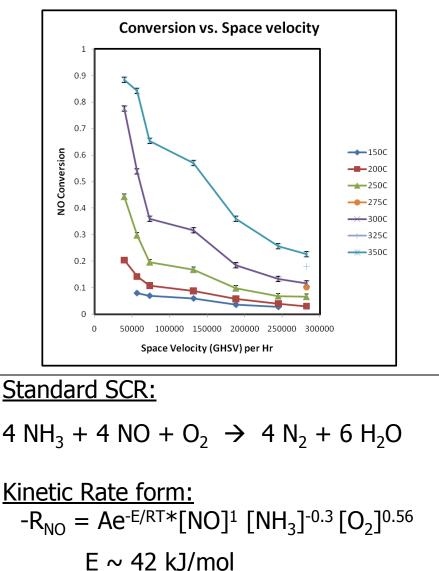
Distance from the front of the catalyst, mm

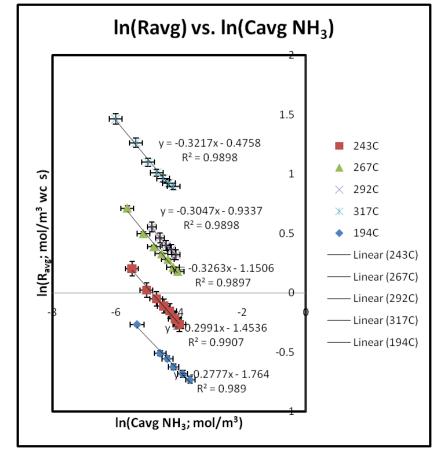
NH₃ Evolution in LNT (UH; Task 1.6)


Catalyst: Pt (2.2 wt.%)/BaO (20 wt.%) 300 °C, 60 s storage; 10 s regeneration (1.5% H₂)



LNT Modeling (UH; Tasks 1.7, 1.8)


- LNT reactor models completed for Pt/BaO, H₂ as reductant
 - Microkinetic formulation: storage & reduction
 - Global kinetic model formulation accounts for particle size effects, NH₃/N₂O/N₂ selectivity



NH₃ SCR on Fe-Zeolite (UH; Task 2.4)

NH₃ SCR Kinetics on Fe-Zeolite

SCR rate: positive order in NO & O₂, inhibited by NH₃

Activities Planned: 4QFY10, FY11

- Spatio-temporal LNT data to be collected for comparison to global model with focus on NH₃
- TAP study of SCR, NSR with $H_2 \& CO$
- In situ DRIFTS study at ORNL: identification of possible $C_aH_bN_cO_d$ species formed on LNT/SCR catalysts
- Complete LNT-SCR reactor studies, including parametric study of NH₃ formation over model LNT catalysts varying in ceria content
- Isotopic ¹⁵NO bench & TAP reactor experiments
- Development of kinetic & reactor models
 - SCR microkinetic model & SCR reactor with comparison to data

Integration of LNT & SCR global kinetic based reactor models

Summary

- Good progress on several fronts
 - Non-NH₃ SCR mechanism important
 - Conditions for NH₃ generation identified from spatiotemporal data
 - SCR kinetics for Fe-zeolite
 - LNT micro & global kinetics & reactor models
- Next steps to focus on LNT/SCR data & modeling, DRIFTS & TAP studies

