Low Cost Carbon Fiber Overview

9 June 2010

C. David (Dave) Warren Field Technical Manager Transportation Materials Research

Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

I M002

CARBON FIBER – Current Research Efforts

LM002

Full Scale Development of Textile Based Precursors - PAN-VA (VT) Materials

Polyolefin Precursors

- PE based Polyolefin Based Precursors (VT)
- Alternative Polyolefin Constituent Precursors and Processing (IT)

Lignin-Based Low-Cost Carbon Fiber Precursors

- Structural Materials for Vehicles (VT)
- Graphite Electrodes for Arc Furnaces (IT)
- Nanoporous CF for Super Capacitors (IT)
- Composite Filter for HVAC (IT)
- Filters for HVAC CO₂ and VOC Capture (IT)

Melt Spinnable PAN for H₂ Storage (FCT)

Advanced Oxidative Stabilization of Carbon Fiber Precursors (VT)

Microwave Assisted Plasma Carbonization (IT)

Precursor and Fiber Evaluation (VT)

Carbon Fiber Technology & Demonstration Facility (VT-ARRA)

Conventional Surface Treatment and Sizing (VT)

Carbon Fiber Test Standards (IEA – VT)

Advanced Structural Carbon Fibers (DARPA)

CARBON FIBER – Future Research Efforts

LM002 Materials

Funding Sources - Multiple Agencies

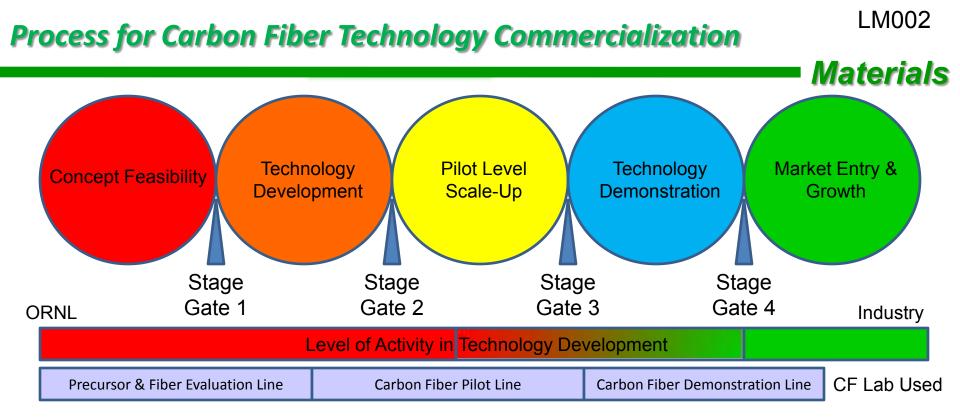
Intermediate Pilot Line Upgrade

Development of Textile Based Precursors – PAN-MA

Advanced Surface Treatment & Sizing

Tow Splitting

Development of Alternative Product Forms


Development of Feedback Process Control

Plasma Modification of Surface Topography

Replacement for Rayon – Ablative Materials

Model for the Conversion of Carbon Fiber Precursors

Recycling – Applications for Recovered Fibers

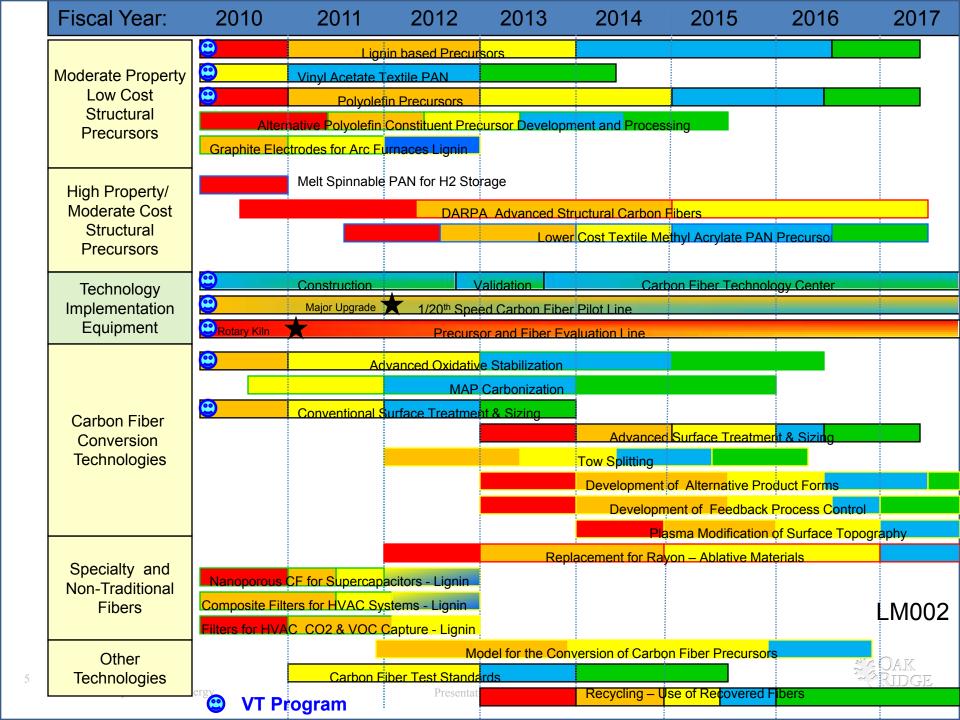
Demonstrate technical feasibility
Demonstrate likely cost effectiveness
Bench scale
Small material volume
Batch processes
Concludes with design of issue

resolution plan

technology works •Demonstrate cost effectiveness if scaled •Bench scale •Small material volume •Batch processes transitioning to continuous • Concludes with design of prototype unit or materials

Demonstrate

- Resolve continuous operation issues
 Develop continuous operation capability for short time periods
 Moderate material volume increasing as issues are resolved
 Concludes with design of continuous unit or final material selection
- Work to resolve fullscale equipment issues
- •Develop multi-tow continuous operation capability for long periods of time
- Material volumes for product design and development
- Concludes with industrial adoption


- Industry adoption
- Product
- development
- Customer base

development

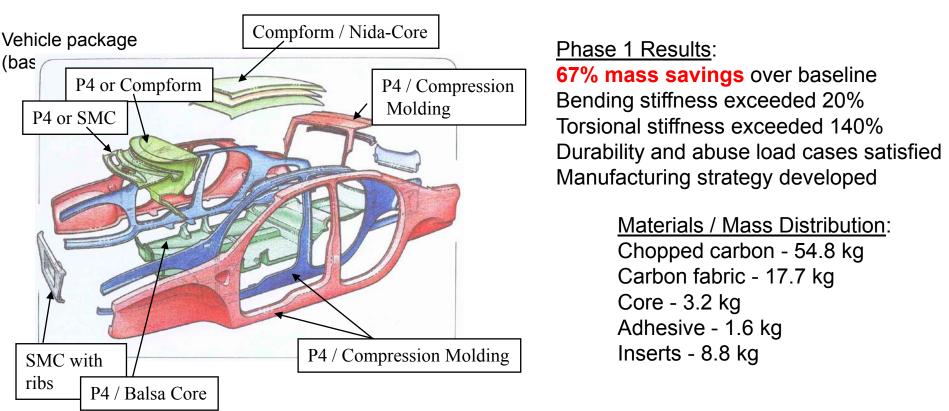
4 Managed by UT-Battelle for the U.S. Department of Energy

Presentation name

LM002

Materials

A 10% mass reduction translates to a 6-7% increase in fuel economy or may be used to offset the increased weight and cost per unit of power of alternative powertrains


		<──	(Criticali	ity of Ch	allenge		Tensile Streng	Tensile Modulu
	Carbon-fiber Composites	Low-cost fibers	High-volume Mfg.	Recycling	Joining	Predictive Modeling		th (Mpa)	s (Gpa)
	Aluminum	Feedstock Cost	Manufacturing	Improved Alloys	Recycling		Aluminum (6000)	258	69
act	Magnesium	Feedstock Cost	Improved Alloys	Corrosion Protection	Manufac-ing	Recycling	Mild Steel	305	210
Impa	Advanced High-Strength	Manufactur ability	Wt. Red. Concepts	Alloy Developme				505	210
	Steels	ability	Concepts	nt			Glassed Filled	45	2
Material Options	Titanium	Low-cost Extraction	Low-cost Production	Forming & Machining	Low-cost PM	Alloy Development	Thermoplastic		- 10
	Metal-matrix Composites	Feedstock Cost	Compositing Methods	Powder Handling	Compaction	Machining & Forming	Glass Fiber SMC	70	13
	Glazings	Low-cost Lightweight Matls.	Noise, Tº struc. models simulations	Noise reduction techniques	UV and IR blockers		Carbon Fiber SMC	215	37
	Emerging Materials and Manufacturing	Material Cost	Mfg-ability	Design Concepts	Performance Models		Higher modulu affords thinne		-

Weight saving opportunities

Charts is provided courtesy of Robert McCune and GE Jim DeVries- Ford Motor Company

ACC Focal Project III Carbon Intensive BIW

LM002

National Laborator

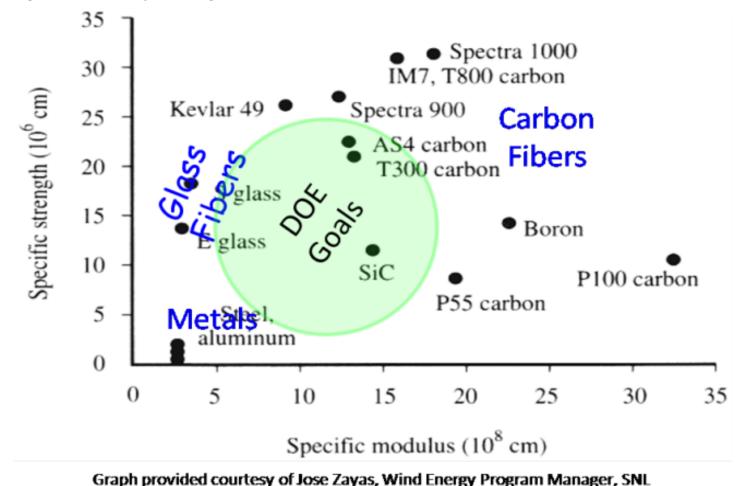
Materials

Density (lb/cu. ft.)	Strength (Kpsi)	Modulus (Mpsi)
480	60-200	30
167	30-40	10
93	30-100	5-8
79	60-150	10-35
	480 167 93	480 60-200 167 30-40 93 30-100

7 Managed by UT-Battelle for the U.S. Department of Energy **Carbon Fiber Price Goal - Transportation**

Barrier: Price is too High **Vehicle Materials** Industrial Grade Carbon Fiber Priority New Growth: Supply and Demand 9.0 MLb/year 140 \$5 - \$7 Today 120 Supply Per Pound Demand 100 Million Lbs Old Growth: 80 End of the 0.8 MLb/year cold War **Program Minimum:** 60 1998 Strength: > 250 Ksi 40 2005 Commercia Aircraft Modulus: > 25 Msi build up by Boeing 787& 20 Airbus A380 & A350 Strain: > 1% A380 & A350 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 Year 6 lbs of CF on Each North American Source: High Performance Composites Vehicle would consume world supply.

National Laboratory


LM002

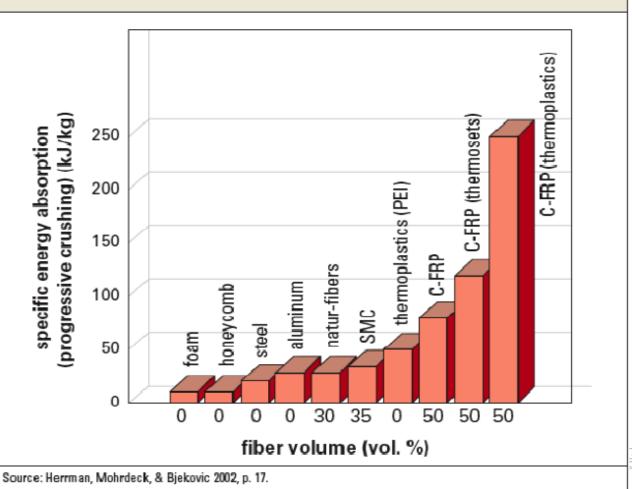
Materials

8 Managed by UT-Battelle for the U.S. Department of Energy

Target Property Ranges for Lower Cost Carbon Fiber Development

9 Managed by UT-Battelle for the U.S. Department of Energy

ational Laborator


Composites can be Successfully Used for Crash Protection

Text Machine for Automotive Crashworthiners

10 Managed by UT-Battelle for the U.S. Department of Energy Figure 15: Advanced composites' remarkable crash energy absorption Carbon-fiber reinforced polymer (C-FRP) crush cones and similar structures can absorb ~120 kJ/kg if made with a thermoset resin like epoxy, or ~250 with a thermoplastic, vs. ~20 for steel.³⁰⁰ Crush properties can also be optimized by mixing carbon with other fibers.

LM002

Materials

Potential Markets and Needs

LM002

Industry	Benefit	Applications	Drivers	Obstacles	Current Market	Potential Market
Automotive	AutomotiveMass Reduction: 10% Mass Savings translates to 6-7% Fuel ReductionWind EnergyEnables Longer Blade Designs and More Efficient 		Tensile Modulus; Tensile Strength	Cost: Need \$5-7/lb; Fiber Format; Compatibility with automotive resins, Processing Technologies	< 1M lbs/yr	> 1B lbs/year
Wind Energy			Tensile Modulus; Tensile Strength to reduce blade deflection	Cost and Fiber Availability; Compression Strength; Fiber Format & Manufacturing Methods	1-10 M Ibs/yr	100M - 1B Ibs/yr
Oil & Gas			Low Mass, High Strength, High Stiffness, Corrosion Resistant	Cost and Fiber Availability; Manufacturing Methods	< 1M lbs/yr	10 - 100M Ibs/yr
Electrical Storage and Transmission	cal Storage Reliability & CTE transmission Thermal Expansion; High Volume Cables; Flywheels Low Mass: High		Manufacturing Processes; Resin	< 1M lbs/yr	10-100M Ibs/yr	
Pressure Vessels Affordable Storage Vessels		Hydrogen Storage, Natural Gas Storage	High Strength; Light Weight	Cost; Consistent Mechanical Properties	< 1M lbs/yr	1-10B lbs/yr ⋰∠OAK

11 Managed by UT-Battelle for the U.S. Department of Energy

Potential Markets and Needs (Continued)

LM002 Materials

Industry	Industry Benefit		Drivers	Obstacles	Current Market	Potential Market
Infrastructure Bridge Design, Bridge Retrofit, Seismic Retrofit, Rapid Build, Hardening against Terrorist Threats		Retrofit and Repair of Aging Bridges and Columns; Pretensioning Cables; Pre- Manufactured Sections; Non- Corrosive Rebar	Tensile Strength & Stiffness; Non- Corrosive; Lightweight; Can be "Pre-Manufactured"	Cost; Fiber Availability; Design Methods; Design Standards; Product Form; Non-Epoxy Resin Compatibility	1-10M Ibs/yr	1-100B Ibs/yr
Non-Aerospace Defense			Low Mass; High Strength; High Stiffness	Cost; Fiber Availability; Fire Resistance; Design into Armor	1-10M Ibs/yr	10-100M Ibs/yr
Electronics	EMI Shielding	Consumer Electronics	Low Mass; Electical Conductivity	Cost; Availability	1-10M lbs/yr	10-100M lbs/yr
Aerospace	Secondary Structures	Fairings; seat structures; luggage racks; galley equipment	High Modulus; Low Mass	Cost of lower performance grades; Non-Epoxy Resin Compatibility	1-10M Ibs/yr	10-100M Ibs/yr
Non-Traditional Energy Applications	Enabler for Geothermal and Ocean Thermal Energy Conversion	Structural Design Members; Thermal Management, Energy Storage	Tensile Strength & Stiffness; Non- Corrosive; Lightweight	Design Concepts; Manufacturing Methods; Fiber Cost; Fiber Availability	1-10M Ibs/yr	10M-1B lbs/yr
Electircal Energy Storage	Electircal Key Storage Media		Electrical and Chemical Properties	Design Concepts; Fiber Cost and Availability	1-5M lbs/yr ភ្	10-50M ∕⊴ []bs/yr
for the US. Depar	atterne de Energy	Pre	sentation_name		11-70M ੈ Ibs/yr	3-114B National Laboratory Ibs/yr

Low Cost Carbon Fiber: Common Issues and Needs

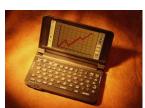
LM002

Materials

Civil Infrastructure Rapid Repair and Installation, Time and Cost Savings

Bio-Mass Materials Alternative Revenue Waste Minimization

Non-Traditional Energy Geothermal, Solar & Ocean Energy



Non-Aerospace Defense Light Weight, **Higher Mobility**

Aerospace **Secondary Structures**

Less Bulky Structures

Zero CLTE

Electronics Light Weight, **EMI Shielding**

Common Issues: Fiber Cost **Fiber Availability Design Methods Manufacturing Methods Product Forms**

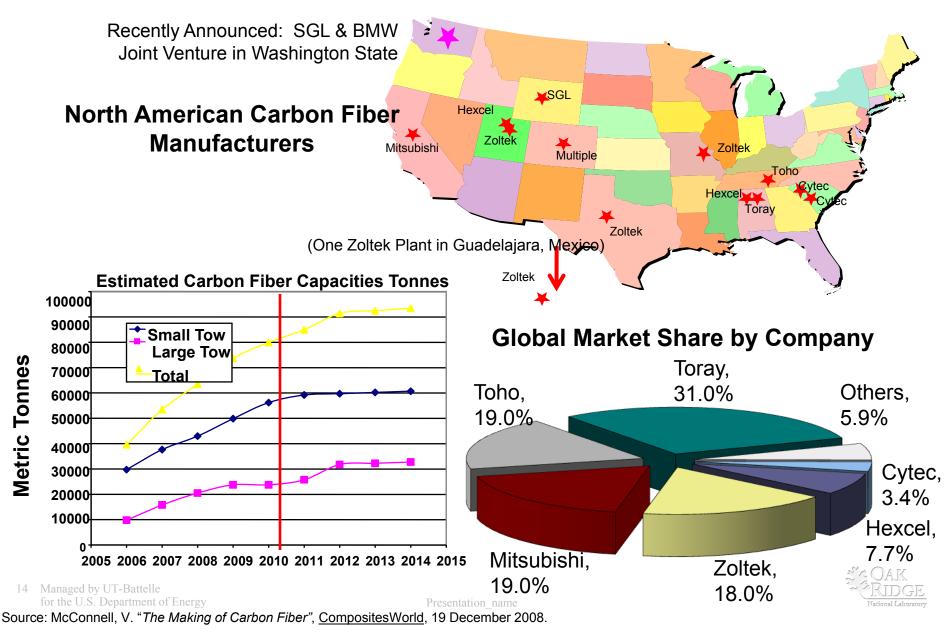
Energy Storage Flywheels, Li-Ion Batteries, **Supercapacitors**

Pressurized **Gas Storage Only Material** With Sufficient Strength/Weight

Oil and Gas Power Transmission

Offshore Structual Components

Vehicle Technologies Necessary for 50+% **Mass Reduction**


Wind Energy **Needed for Longer Blade Designs**

Domestic Carbon Fiber Production & Comparison

LM002

Materials

Global Carbon Fiber Production

LM002 Materials

Global Carbon Fiber Production

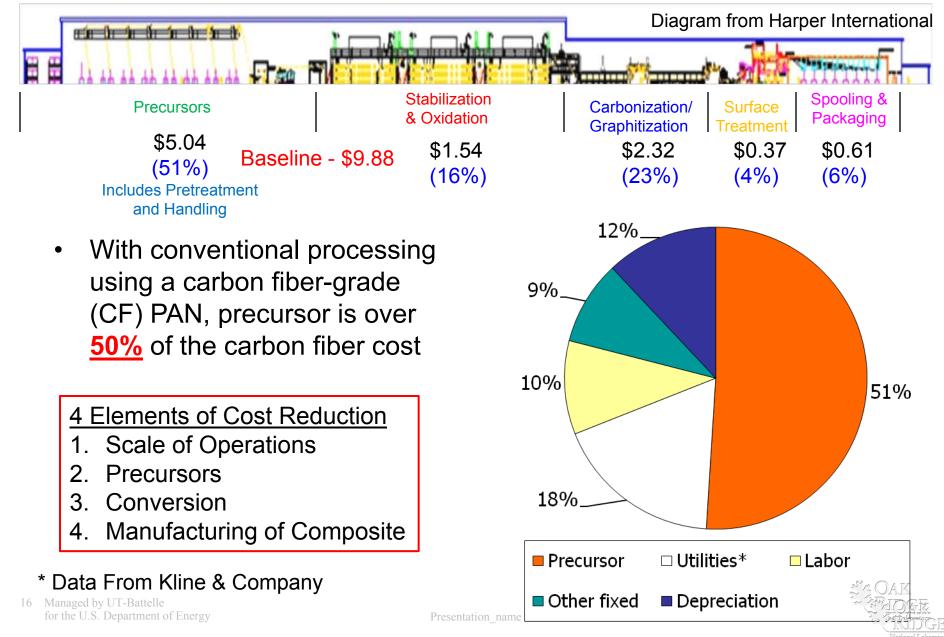
Estimated Capacity 2010 by manufacturer and type of fiber

Not included is a 40,000,000 lb/year Chinese plant to come on-line after 2010. *Small Tow is < 24,000 filaments. Large Tow is > 24,000 filaments.

			Small Tow*	Large Tow*	Total
			Production,	Production,	Production,
Company	Headquarters	Manufacturing Sites	lbs/year	lbs/year	lbs/year
AKSA	Turkey	Turkey	4,000,000		4,000,000
Cytec	US – SC	US-SC	5,000,000		5,000,000
Dalian Xingke	China	China	1,320,000		1,320,000
Grafil - Mitsubishi	US – CA	US - CA	4,400,000		4,400,000
Hexcel	US – UT	US - UT, AL	16,000,000		16,000,000
Kemrock	India	INDIA	1,430,000		1,430,000
Mitsubishi - Rayon	Japan	Japan, US-CA	13,530,000	6,000,000	19,530,000
SGL	Germany	Germany, UK, US-WY		14,300,000	14,300,000
Toho	Japan	Japan, US-TN	29,620,000		29,620,000
Тогау	Japan	Japan, US-AL	39,440,000	660,000	40,100,000
Yingyou	China	China	484,000		484,000
Zoltek	US-Mo	US -UT, TX, MO, Mexico		19,300,000	19,300,000
Total			115,224,000	40,260,000	155,484,000

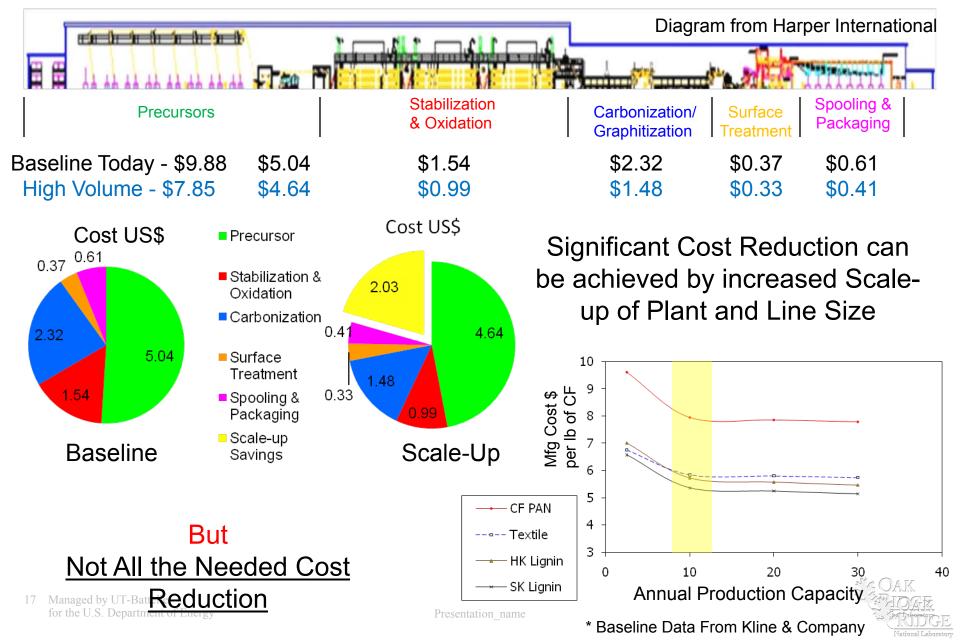
for the U.S. Department of Energy

Presentation_name


National Laborator

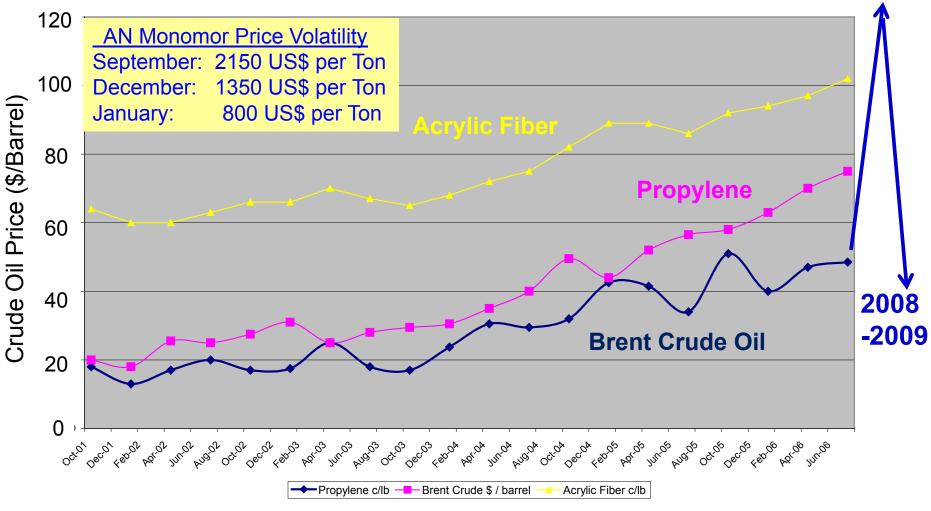
Source: McConnell, V. "The Making of Carbon Fiber", CompositesWorld, 19 December 2008.

Carbon Fiber Costs (Baseline)



Materials

Carbon Fiber Costs (1. Scale of Operations)



PAN Dependence on Oil Price

LM002

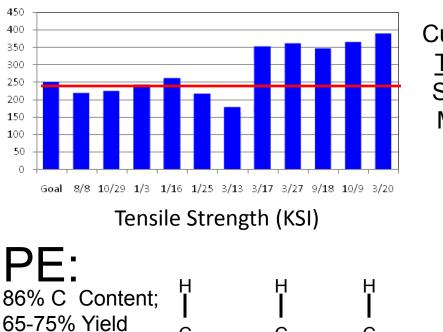
Materials

Current Carbon Fiber Raw Materials are Tied to Oil

18 Managed by UT-Battelle for the U.S. Department of Energy

Carbon Fiber Costs (2. Precursors)

LM002 Materials


More Affordable Precursors are Needed

<u>3 Current Precursor Options</u>

\$0.50-\$0.75/lb;

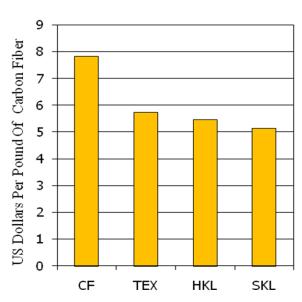
Melt Spun Department of Energy

- 1. Textile Grade PAN (MA or VA formulations)
- 2. Lignin Based Precursor (Hardwood or Softwood)
- 3. Polyolefins (not shown on chart)

Н

н

Carbonized Textile Precursor


Current Carbonized <u>Textile Properties:</u> Strength: 400 KSI Modulus: 35 MSI

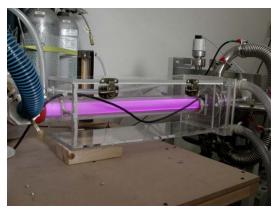
н

Presentation_name

н

Alternative Precursors and Conventional Processing

Processed Precursor Fibers from a Hardwood/Softwood Lignin Blend.

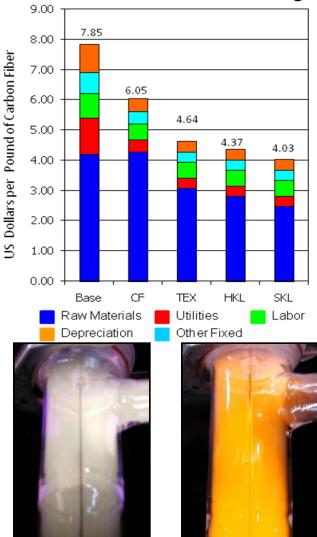

Current Research (3. Conversion)

LM002 Materials

Alternative Processing Methods Under Development

4 Processing Options

- 1. Advanced Stabilization
- 2. Plasma Oxidation
- 3. MAP Carbonization
- 4. Surface Treatment (Not on graph)



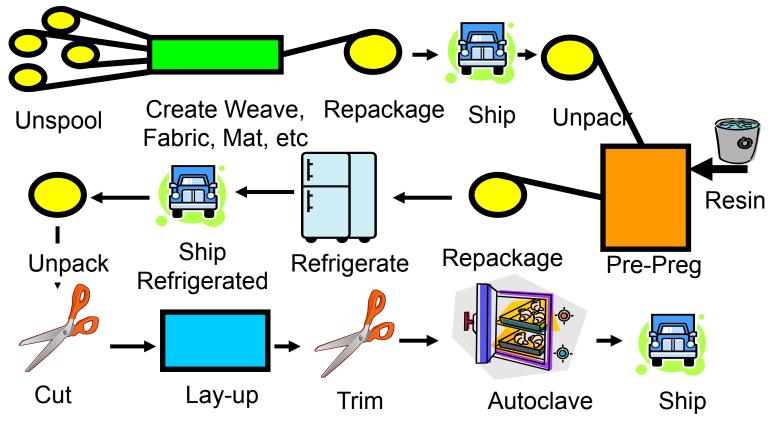
 Mag = 1.50 K.X
 10µm
 EviT * 3.00 kV WD = 16 mm
 Signal A = SE2 Phade No. = 1650
 Date 8 Jan 2007 Time :1549:36

Advanced Stabilization

MAP Carbonization/ Graphitization Unit

Presentation_name

Alternative Processing



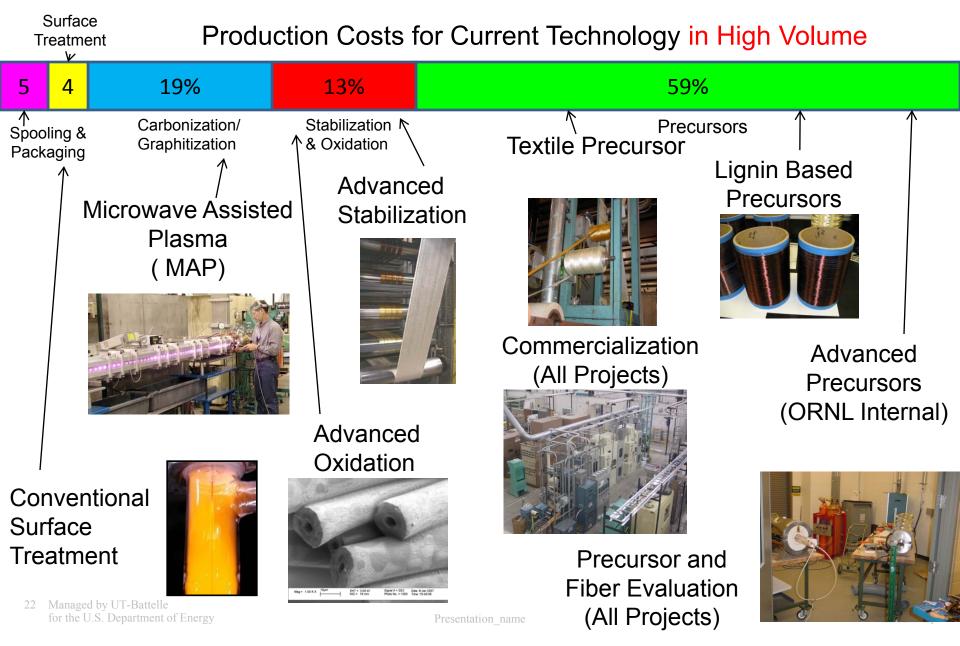
Advanced Surface Treatment

LM002 Materials

Composite Down Stream Processing

System designed for Epoxy based, Aerospace parts

The composite development and production process is very fragmented and expensive for typical carbon fiber composites.


21 Managed by UT-Battelle 21 Managed by US-Danament of Energy for the U.S. Department of Energy

Carbon Fiber Portfolio (Current)

Materials

LM002

Cost Model Output Example Comparing Technologies

		CF-GRADE PAN			TEXTILE-GRADE PAN			
Factor	Con. Tech	РО	MAP	PO and MAP	Con. Tech.	РО	MAP	PO and MAP
Capacity, MM lb/yr	24.0	31.0	24.0	31	27.5	31.0	27.5	31.0
Number of lines	14	6	14	6	8	6	8	6
Line speed, Ft/hr	1,064	3,192	1,064	3,192	2.128	3,192	2,128	3,192
Investment, \$ Million	209.4	166.0	174.1	132.5	152.9	144.1	126.0	110.5
Investment, \$ per lb of CF	8.72	5.36	7.23	4.28	5.56	4.66	4.58	3.57
Total Head count	372	320	372	320	300	320	300	320

Con Tech – Conventional Technology PO – Plasma Oxidation MAP – Microwave Assisted Plasma

LM002

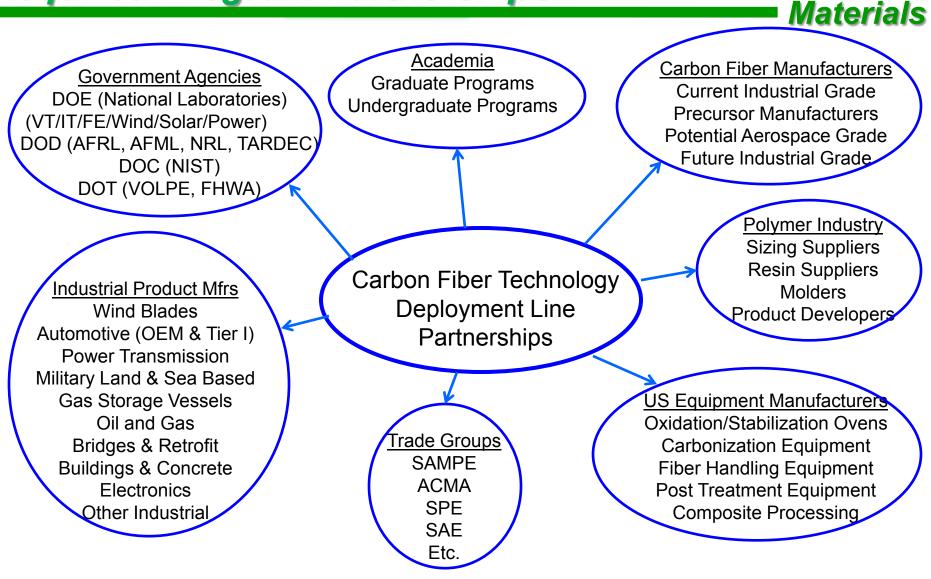
Materials

Carbon Fiber Technology Center

LM002 Materials

- North America's most comprehensive carbon fiber material and process development capabilities
- Development of carbon fiber technology for energy and national security applications
- Low-cost and high-performance fibers
- Fast, energy efficient processing
- · Capability to evaluate micrograms and produce up to 25 tonnes/year
- Produce fibers for material and process evaluations by composite manufacturers
- Train and educate workers
- 24 Grow partnerships with US industry

Conventional **Conversion Line** Adv Technology **Conversion Line** Melt Spin Line


Facility and equipment perspective.

for the U.S. Department of Energy

Required Program Partnerships

LM002

Technology Deployment Line to be Built as Part of Stimulus Funding

Significant Awards and Presentations

Significant Recognitions:

- ORNL Team Invited to Conduct Pre-Conference Workshop on Carbon Fiber
- SPE Leadership Award
- Chaired 2008 Carbon Fibre Conference Hamburg, Germany
- American Carbon Society Fellow and Graffin Lecturer, Fred Baker 7 Lectures

Conference Keynote and Plenary Presentations:

- Baker: Keynote Carbon 2008 conference in Nagano, Japan.
- Warren: Keynote 2009 Composites and Polycon Conference in Tampa, Florida.
- Warren: Keynote 2009 SAMPE Spring Conference in Baltimore.
- Warren: Keynote Carbon Fibre Conference in Hamburg, Germany.
- Warren: Plenary Composites and Polycon Conference in Tampa, Florida.
- Warren: Keynote ICCE-17 Conference, July 2009, Honolulu, HI.
- Eberle: Plenary 2009 Regional ASM/TMS Annual Symposium on Materials Challenges for Alternative Energy, 11-12 May 2009.
- Baker: Plenary 6th World Congress on Industrial Biotechnology and Bioprocessing

Other (Too many to List):

34 Published Technical papers.

LM002

Materials

Significant Awards and Presentations

LM002 Materials

Chairing Paper Sessions at Conferences:

- •Das: Chaired three technical Sustainable Program Development Committee sessions at the SAE 2009 Annual Congress held in Detroit .
- •Baker: Chaired paper session: "Carbon-based composites, nanocomposites, and components (fibres, nanotubes, matrices) for mechanical properties," at the *CARBON 2009* Conference, Biarritz, France.

•Eberle: Selected to chair a session at the SAMPE 2010 Composites Conference.

ID / Patent #	Inventor	Title					
7,534,854	Paulauskas, White, &	Apparetus and method for exidetion and stabilization of nelymeric meterials					
B1	Sherman	Apparatus and method for oxidation and stabilization of polymeric materials					
7,649,078	Paulauskas,	Amonstry and Mathed for Stabilization or Ovidation of Delymonic Materials					
B1	r aulauskas,	Apparatus and Method for Stabilization or Oxidation of Polymeric Materials					
1973	Naskar, Paulauskas,	Novel compositions for PAN based carbon fiber precursors					
1975	Janke, & Eberle						
2060	Menchhofer, Baker, &	Carbon Nanotubes Grown on Bulk Materials and Methods for Fabrication					
2000	Montgomery	Carbon Nanotubes Grown on Burk Materials and Methods for Fabrication					
2187	Baker	Production of Composite Cellulose/Carbon Fiber Filters for HVAC Systems					
2212	Several	Carbon Fiber Composites with Enhanced Compression Strength					
2239	Several	Polyolefin-based flame retardant material					
2241	Paulauskas & Naskar	Extremely Flame Retardant Material from PAN Fibers via Advanced Oxidation					
2293	Baker et. al.	Genetically-Modified Lignin-Derived Bio-Thermoplastics for Polymer Matrix					
2293	Dakel et. al.	Composites					

Patents & Invention Disclosures:

The Carbon Fiber Team

LM002

Materials

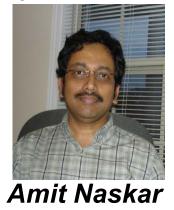
Felix Paulauskas

Nidia Gallego

DaveWarren

Frederick Baker

Mohamed Abdallah



Fue Xiong

Soydan Ozcan

Cliff Eberle

Questions

LM002