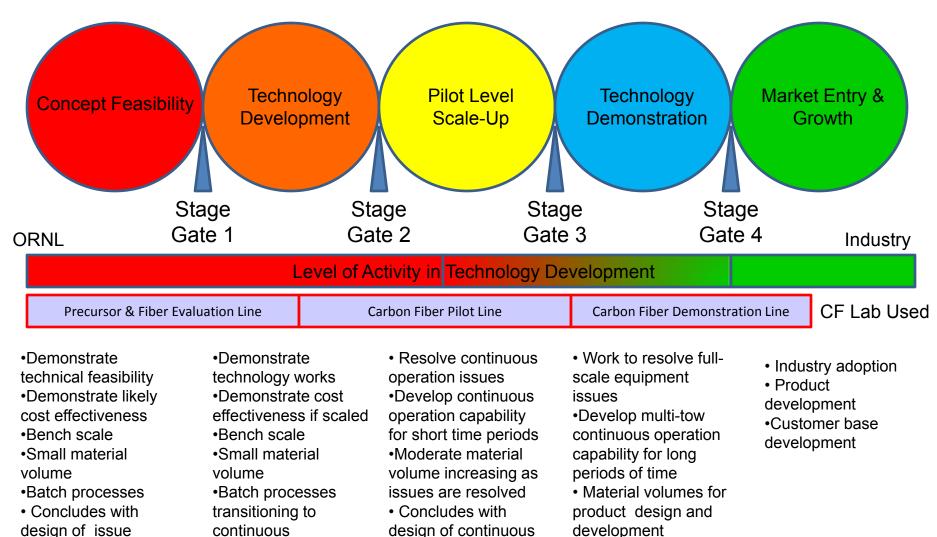
Carbon Fiber Pilot Plant and Research Facilities

9 June 2010

C. David (Dave) Warren Field Technical Manager Transportation Materials Research

Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV

This presentation does not contain any proprietary, confidential, or otherwise restricted information.


I M003

Process for Carbon Fiber Technology Commercialization

LM003

Materials

2 Managed by UT-Battelle for the U.S. Department of Energy • Concludes with design of prototype

unit or materials

resolution plan

Presentation name

unit or final material

selection

· Concludes with

industrial adoption

Carbon Fiber Research Facility	Type Production	Fiber Types	Tow Size	Tensioning	Line Speed	Run Production Quantity	Annual Production Quantity	Intended Use
Lignin Facilities	Batch	Lignin	Small & Batch	None	Batch	few grams	N/A	Scientific Development of Lignin Precursors
Precursor and Fiber Evaluation Line	Continuous Fiber & Batch	Polymer Based and Continous Lignin	1 - 50K Filaments; Single Tow	Precise for Small Tow	1/4-5 in/min	Micrograms to 100 g	N/A	Scientific Development of Precursors; Small Volume; Conversion Process Development
Current Pilot Line	Continuous Fiber	Polymer Based	3K-50K Filaments; 1- 5 Tows	Limited	1-16 in/min	0.2 kg - 5 kg	1000 kg	Quantities validating Precursor Development and Conversion Protocol; First Scaling Step
Carbon Fiber Demonstration Facility Managed by UT-Batto for the U.S. Departme		All Types	3K-80K Tows; Up to 24 Tows + Bulk Convenyance	tensioning and	60+ in/min	up to 2000 kg	25000 kg	Precursors and Advanced Conversion - Demonstrate Technology Scaling; Samples for Large Scale Material Evaluations

Compounding/Pelletization Line and Multifilament Melt Spinning Line



LM003

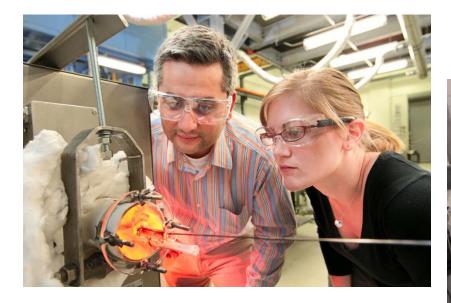
Precursor & Fiber Evaluation Line

Budget: \$200K/year

This has become our "workhorse" equipment system

5 Managed by UT-Battelle for the U.S. Department of Energy

Some Equipment Provided by Mfrs



National Laboratory

LM003

Precursor Evaluation System

- Designed for development of conventional processing recipes with limited quantities of precursor
 - Residence time, temperature, atmospheric composition, and tension are independently controlled in each furnace
 - Can process single filament up to thousands of filaments
 - Precise tension control and stretching capability allows stretched/tensioned processing of ~20-filament tows
 - Temperature capability from room temperature to 1,700°C; 2,500°C furnace

LM003

Special Capabilities

LM003 Materials

Laboratory Box Oven for Tow Oxidation

Low-Force Tension Controller

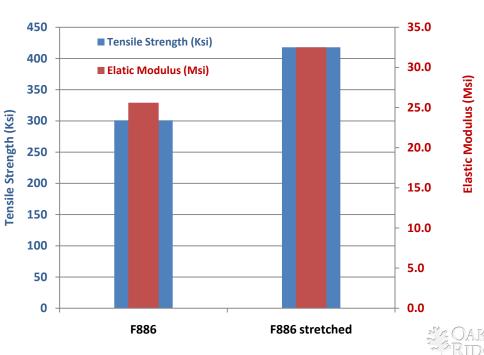
New 2,500 °C Furnace

New 1,750 °C Furnace

Dancing Tension Controller

Conventional Pilot Line

- 1:20 scale of a commercial grade production line ٠
- Capacity for 8 tows ٠
- Preferred tow size $\geq 3k$ •


LM003

Upgrade Needed to Better Develop Processing Protocols

- Lack of progressive, controlled stretching capabilities in the oxidation stage.
- Fiber movement system: low speed, electronically antiquated.
- Pretreatment unit: designed to handle large precursor bands (e.g. Courtaulds, textile, etc.).
- Pre-stretching non-uniform and mainly "gear" to eliminate fiber crimp.

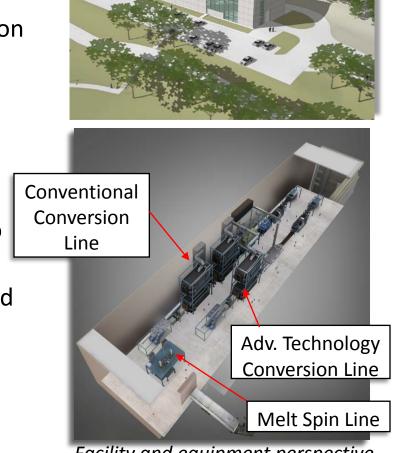
An example of the Prestretching of the Textile Precursor:

Thus during development, evaluated materials would appear to have lower properties than can be achieved in production.

F-886

LM003

NEEDED MODIFICATIONS


- Design and installed a progressive, controlled stretching system, mainly in first and second oxidation ovens.
- Modified tow flow patents/rollers to increase production line speed.
- Modified pre-treatment to take multiple spool (up to 6kg each) units.
- Add Conventional Surface Treatment Capabilities.
- Not Yet Scheduled

Carbon Fiber Technology Center

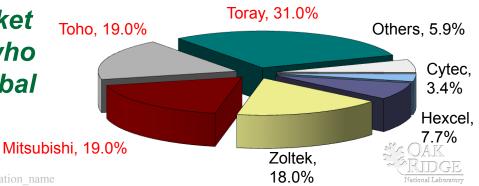
- North America's most comprehensive carbon fiber material and process development capabilities
- Development and demonstration of carbon fiber technology for energy and national security applications
- Low-cost and high-performance fibers
- Fast, energy efficient processing
- Capability to evaluate micrograms of candidate materials and produce up to 25 tonnes/year of carbon fibers
- Produce fibers for large-scale material and process evaluations by composite manufacturers
- Train and educate workers
- Grow partnerships with US industry

Facility and equipment perspective

- Highly flexible, "conventional" carbon fiber production line that can accept "any precursor in any format"
- Melt-spun precursor fiber production line with production capacity matched to carbon fiber line
- Space and utility provisions for the future addition of an advanced technology carbon fiber production line with similar capacity
- Consolidation and expansion of LCCF and carbon fiber composites R&D tools with emphasis in composites manufacturing
 - 1. Precursor Spinning Line
 - 2. Conventional Conversion Line
 - 3. Advanced Technology Line
 - 4. Carbon Fiber Composites Fabrication

Part of This Effort

- 70 tpa rated capacity
- Capability to produce lignin, polyolefin, and pitch precursor filaments; upgradeable for production of melt-spun PAN filaments
- Twin screw extruder with precursor compounding and master batch
 preparation capabilities
- Operation temperatures from 150 to 350°C
- 2500 to 6250 filaments per position with up to 8 spinneret heads per position
- Process-dependent ability to produce 1 to 1.5 denier per filament.
- Ability to produce designed filaments with varied filament morphology, including bi- and tri-component capability
- Spun-bonded nonwoven web production unit, up to 6000 ft/min, with conveyer belt and friction-driven winding devices
- Corrosion-resistant wetted surfaces for handling corrosive additives
- Three induction-heated Godet drawing units with controlled heating to 200°C and denier control stand
- Metered finish application, interlacing and cutter-aspirators

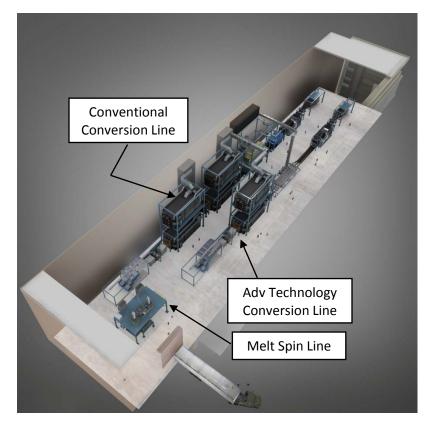

- 25 tpa rated capacity ٠
- Exceptionally wide temperature ranges in all ovens and furnaces •
- Ability to feed precursor fibers from a creel, from boxes/bales, or in bulk product form •

- Material transport in tow or bulk form ۲
- Tow sizes from 3K to 80K. ۲
- Enhanced stretching and tensioning capabilities, with significant differential stretching • capability in the oxidation module
- Ovens, furnaces, and exhaust systems designed to handle effluent by-products and • rates from PAN, lignin, polyolefin, pitch, and rayon precursors
- Low-temperature carbonization furnace designed to accommodate an oxidizing • atmosphere
- Expansion slot to enable the addition of an ultra-high-temperature graphitization • furnace for specialized carbon fibers
- Expansion slot for an additional surface treatment module ٠
- Finished fibers spooled or packaged in mat or bulk form ۲
- Fully integrated control system with data logging, web interface, and custom access to Manag**control troom and all data displays** for the U.S. Department of Energy

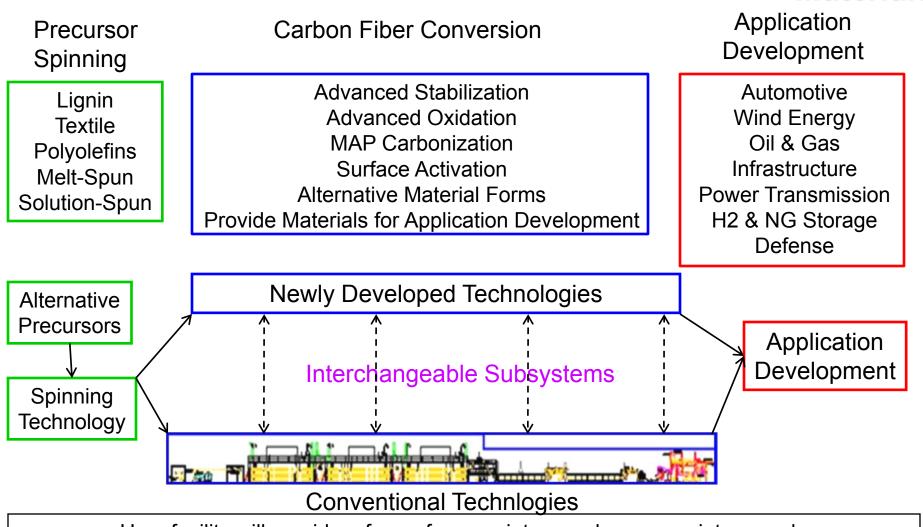
Benefits

- Fills the need for a national center to demonstrate scalability of LCCF for automotive/truck, wind energy, oil and gas, and other energy applications
- Significantly accelerate the commercialization of LCCF technologies
- Demonstrate scalability of LCCF composites manufacturing processes
- Proprietary research capabilities
- Promote the development of Industrial partnerships and encourage vertically integrated teams
- Stimulate economic growth by job creation and workforce development, including student research
- Utilizes US based technologies and equipment

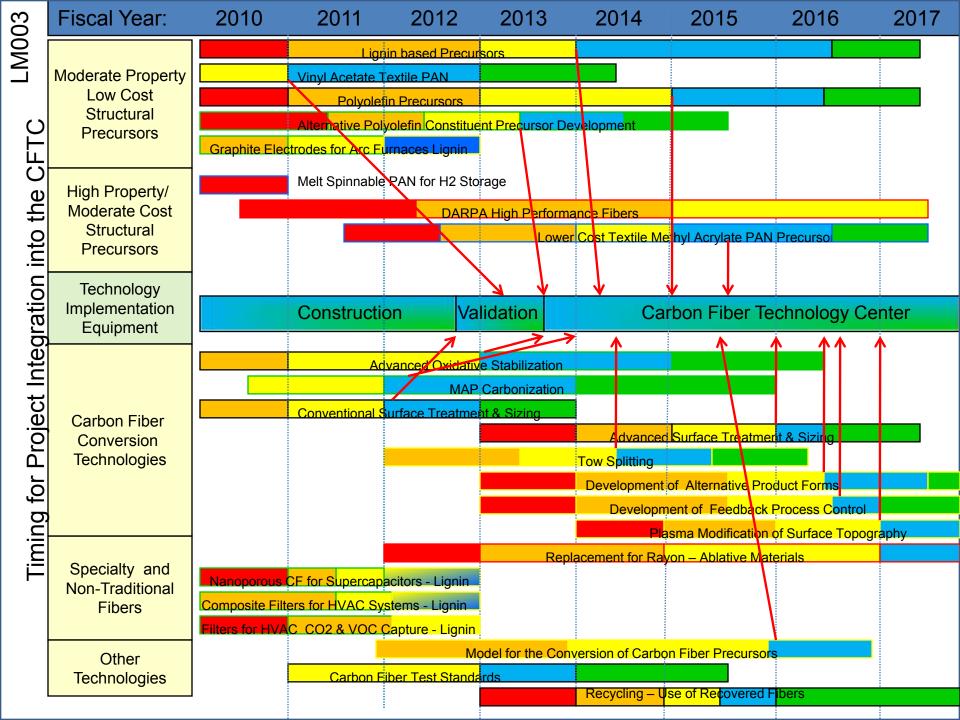
Recapture technology and market leadership from the Japanese who currently control 70% of the global carbon fiber market


Global Market Share by Company

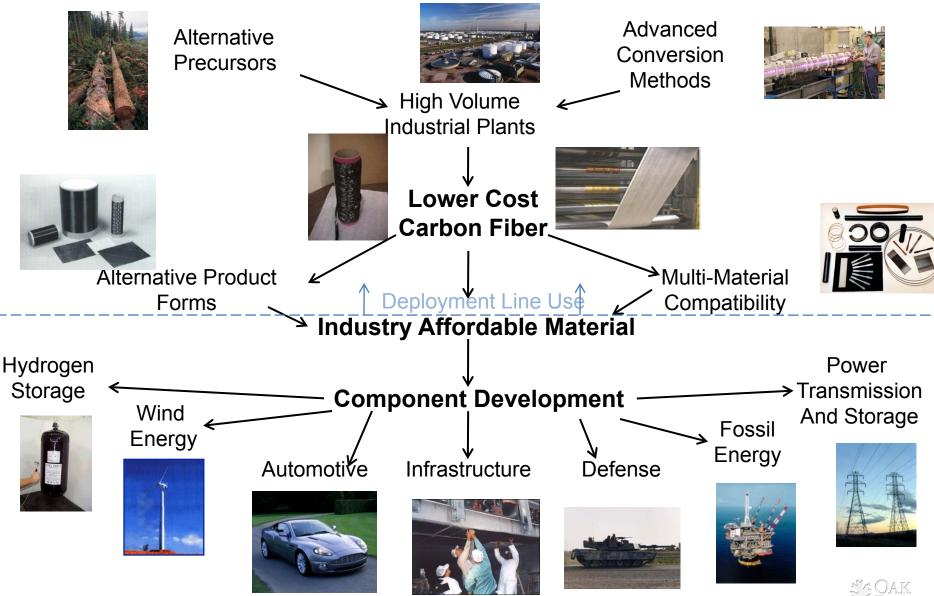
LM003


LM003 Materials

- Specify, design install, and commission a highly flexible, conventional carbon fiber conversion line of 25 ton/year capacity that can convert "any precursor in any format"
- Specify, design, install and commission a melt-spun precursor fiber production line of 50 - 145 ton/year capacity
- Conduct industry workshops to prepare facilities operational plan and schedule
- Design and construct infrastructure that meets operational requirements for the demonstration fiber production lines and the future advanced technology conversion line

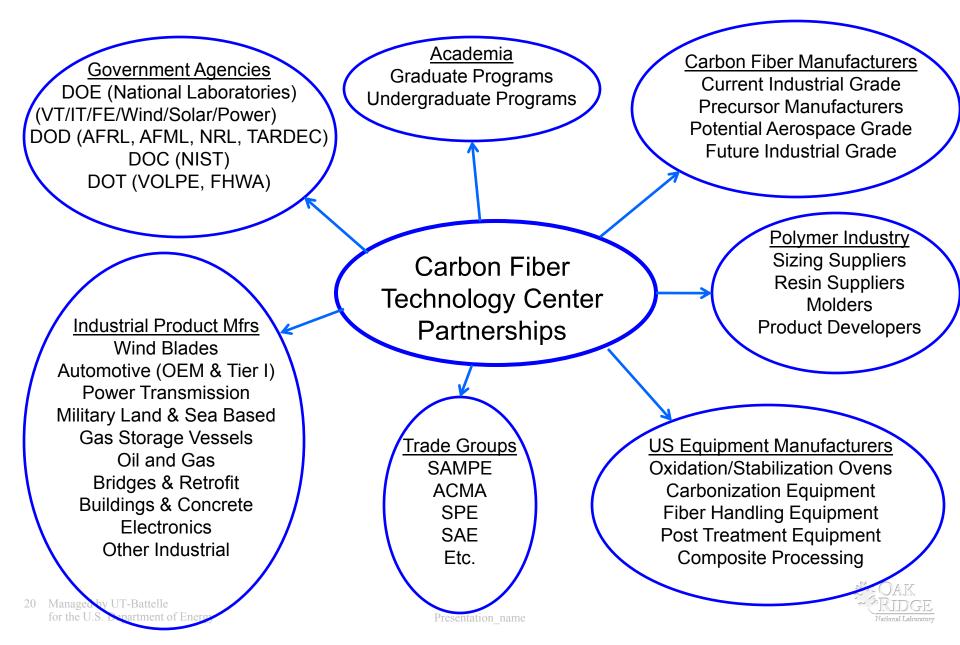

Facility will be a Center for Deployment

User facility will provide a forum for proprietary and non-proprietary work. Location would have to be assessable to all with relevant technologies Would provide the materials for application development targeted at HIGH Volume industries.


LM003

Summary Technology Flow

ational Laborator



19 Managed by UT-Battelle for the U.S. Department of Energy

Presentation name

Required Program Partnerships

LM003 Materials

CFTC Project Management Plans

Project will be managed in compliance with ARRA requirements

 Budget Allocations Total 	Awarded \$ 34.7 M
 Infrastructure 	\$ 14.7 M
 Carbon fiber line 	\$ 14.0 M
 Precursor fiber line 	\$ 6.0 M

Critical Milestones and Decision Points

 CD-0 Approve mission need 	Oct 2009
 Conversion line procurement award 	Aug 2010
 Begin building construction 	Oct 2010
 Precursor fiber line procurement award 	Jan 2011
 Building complete 	Jan 2012
 Equipment delivery 	Feb 2012
 Equipment commissioned 	Sept 2012

LM003

Questions

