

Auto/Steel Partnership:

AHSS Stamping Strain Rate Characterization Sheet Steel Fatigue **AHSS** Joining

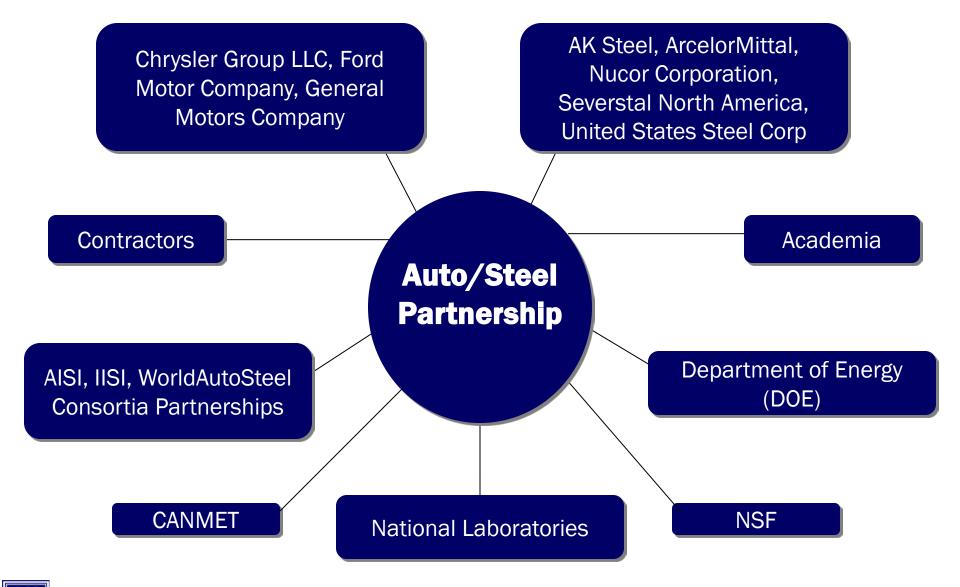
> Dr. Roger A. Heimbuch Auto/Steel Partnership June 8, 2010

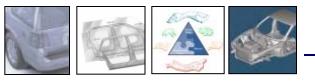
> > Project ID # LM019

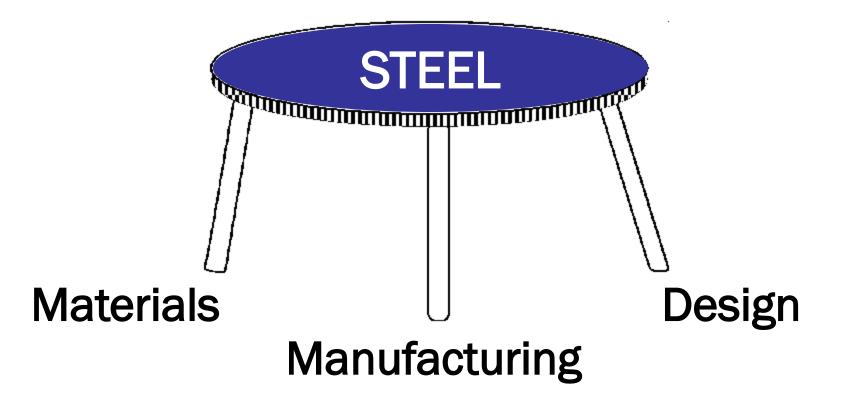
www.a-sp.org

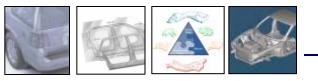
Auto/Steel Partnership

This presentation does not contain any proprietary, confidential, or otherwise restricted information


MEMBERS OF A/SP - Chartered in 1987



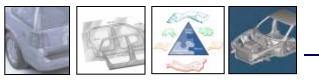




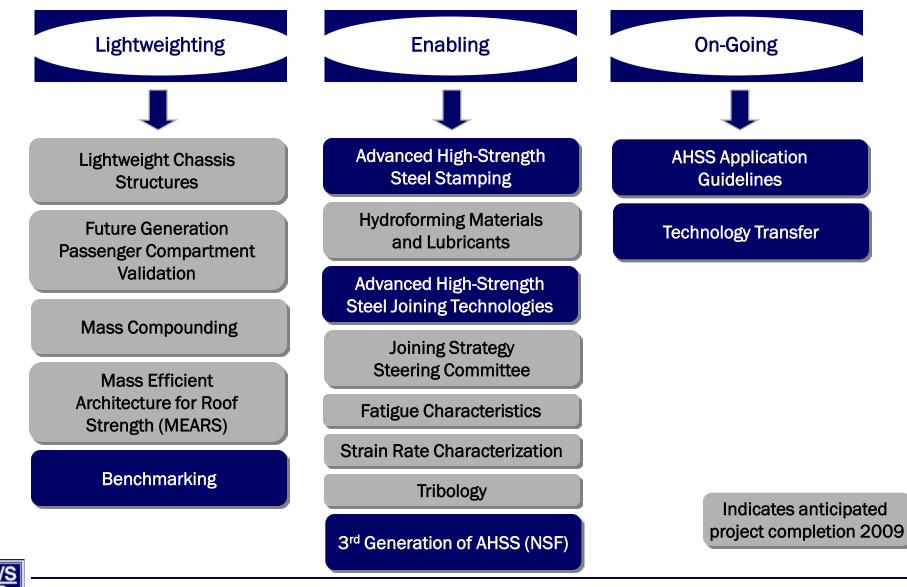
2010 DOE Merit Review

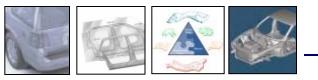
FreedomCAR:

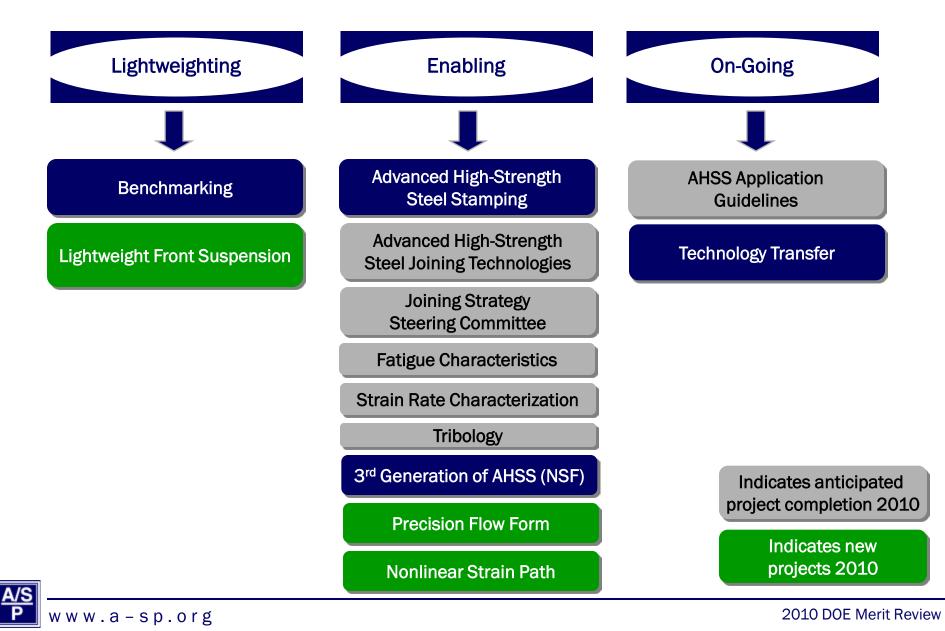
- 50% Mass Reduction
- Lifecycle Cost
- Performance/Reliability/Safety
- Recyclability
- Develop/Transfer Technology

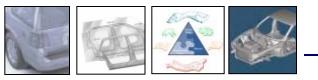


Auto/Steel Partnership

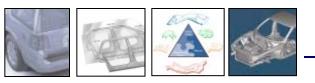

- 40% Mass Reduction
- Lifecycle Cost
- Performance/Reliability/Safety
- Recyclability
- Develop/Transfer Technology






2009 A/SP PROJECT PORTFOLIO

2010 A/SP PROJECT PORTFOLIO



Advanced High-Strength Steel Stamping

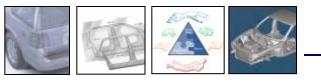
This presentation does not contain any proprietary, confidential, or otherwise restricted information

2010 DOE Merit Review

Timeline

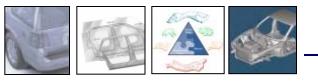
- Start 10/2001
- End 09/2011
- 80% Complete

Budget

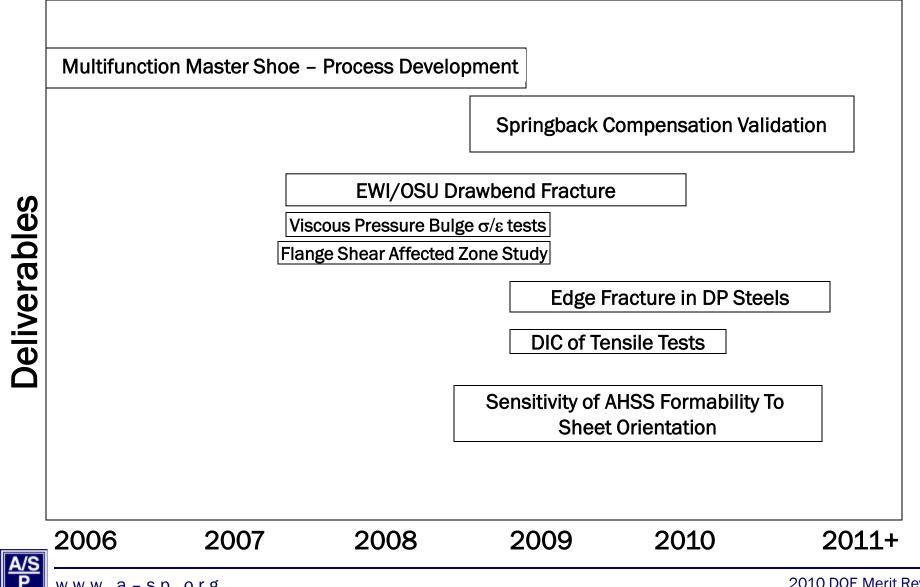

- Total Project Funding
 - DOE \$2,068K
 - Cost Share \$1,993K
- Funding for FY09
 - DOE \$245K
- Funding for FY10
 - DOE \$323K

Barriers

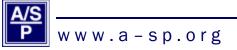
 Understanding forming characteristics of AHSS.


Partners

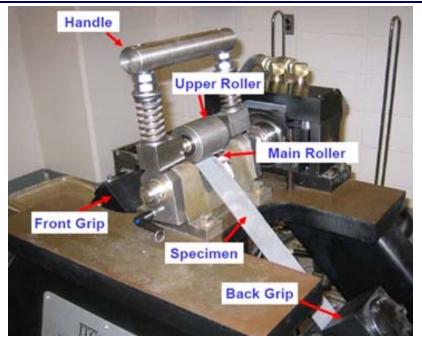
- Wayne State University
- Oakland University
- Autodie, LLC
- Ajax Tocco
- AET Integration Inc



- Evaluate springback prediction capability.
- Investigate die processes and part features for best part quality in AHSS:
 - minimum springback/curl/twist
 - minimum wrinkling
 - dimensional accuracy
- Assess impact of AHSS on press force/energy requirements.
- Support development of product/process design guidelines and failure criteria for AHSS.
- Provide for effective Technology Transfer.



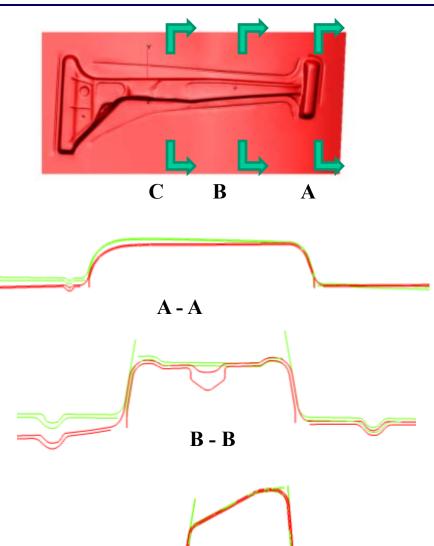
www.a-sp.org



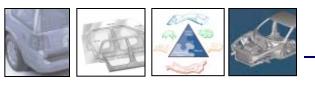

- Springback prediction:
 - Finite element modeling and correlation to experiment
 - Empirical constitutive modeling
- Springback reduction Conception, execution and validation of process/product features resulting in:
 - Product design guidelines
 - Process design guidelines
- AHSS Fracture Characterization of fracture during stamping of AHSS to guide stamping process and steel development.

DRAW BEND SHEAR FRACTURE

- - Draw-bend test developed to emulate drawing a material over a die radius while increasing tension and displacement until failure.
 - New constitutive material model (Holloman/Voce or H/V) developed to improve failure prediction by comprehending effect of temperature increase caused by work hardening.



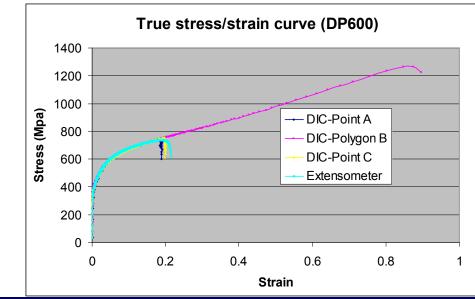
B-PILLAR SPRINGBACK COMPENSATION

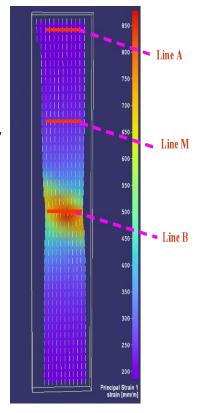

- USAMP-developed software used to predict compensated surface.
- Predicted springback from original surface did not match scanned parts, so a tuning factor was used to match data and develop compensated surface.

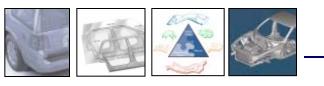
C - **C**

EDGE CRACKING

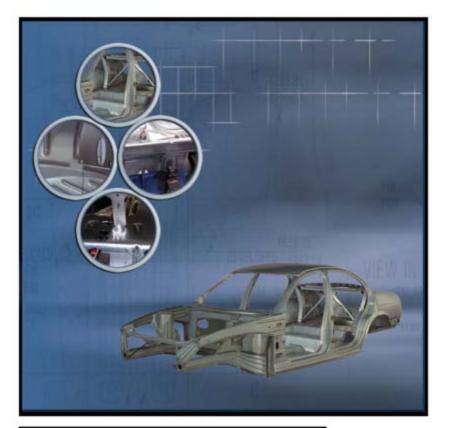
- Stretched-edge fracture an important problem in application of AHSS.
- Criteria appear to be different for small radius features (stretched and flanged holes) compared to larger radius features (flanges on body panel cutouts).


- Development of a flat punch hole expansion test to study AHSS edge fracture limits under various geometric, edge trimming and material thickness conditions to develop an empirical failure criteria.
- Empirical measurement of edge cracking for large size production AHSS stampings (and edge thinning).
- Study of the effect of material properties, microstructure and testing conditions on the empirical failure criterion of AHSS stretch drawing edge fracture (in conjunction with Wayne State University).





DIC MEASUREMENT OF TENSILE STRAINS

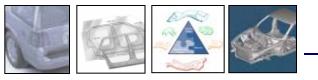

- Stress-strain behavior can be measured during necking and fracture.
- Actual measured curves can be used potentially for FEA simulation without extrapolation.
- 6 DP, TRIP and HSLA quasi-static cases complete.
- High strain rate cases complete.

 Advanced High-Strength Steel Applications Guidelines document updated January 2010 (12 Case Studies, hard copy and electronic).

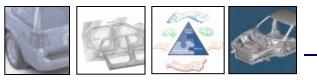
Advanced High-Strength Steel Applications Guidelines

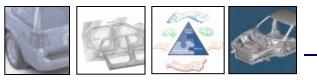
A Special Edition of In-Depth AHSS Case Studies Detailed cose studies on the development and implementation of sheet metal stamping processes that employ AHSS steel grades.

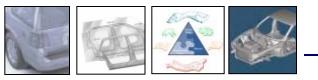
Auto/Steel Partnership



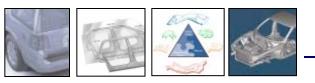
- Shear Fracture Project Technical Review Meetings included project PIs, A/SP Forming Team members, other interested member company engineers.
 - Sept. 10, 2008 (included other DOE investigators)
 - April 2, 2009
 - Nov. 11, 2009 (final project review)




- Presentations:
 - "Edge Fracture of Dual Phase Steel in Hole Expansion" – MS&T 2008, Pittsburgh, PA (Wayne State University)
 - "Failure Analysis of Advanced High-Strength Steels (AHSS) in Stretch Bending" – Great Designs In Steel 2009, Livonia, MI (EWi/SFTC/Ohio State University)


- Technical Papers IDDRG 2009, Golden, CO:
 - "Failure Analysis of Advanced High-Strength Steels (AHSS) During Draw Bending" – (EWi/Ohio State University)
 - Accurate Constitutive Equation For Dual-Phase Steels (Ohio State University)
 - "Sheet Metal Shearing And Edge Characterization Of Dual-Phase Steels" (Wayne State University)
- Reports Distributed to Team Members:
 - "Developing A Spreadsheet For Predicting Limit Strain In Stretching A Sheared Edge" (B. S. Levy & C. Van Tyne)

- Edge fracture work continuing into 2011.
- 3rd Generation Advanced High-Strength Steel forming trials are on the horizon.



Fatigue of Advanced High-Strength Steel

This presentation does not contain any proprietary, confidential, or otherwise restricted information

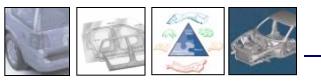
2010 DOE Merit Review

Timeline

- Start 10/2001
- End 09/2010
- 90% Complete

Budget

- Total Project Funding
 - DOE \$553K
 - Cost Share \$445K
- Funding for FY09
 - DOE \$23K
- Funding for FY10
 - DOE \$70K


www.a-sp.org

Barriers

 Lack of fatigue data for AHSS base materials and joints

Partners

- University of Michigan
- Roman Engineering Services

- Provide automotive manufacturers with design guidance and data for Advanced High-Strength Steel (AHSS) fatigue applications to facilitate weight reduction initiatives:
 - Base materials
 - Spot welds
 - Adhesively bonded and weld-bonded joints
 - MIG welds
 - Laser welds
- Act as an enabler project for teams involved in frame and body construction as well those evaluating joint construction methodologies:
 - Lightweight Front End Structures
 - Lightweight Chassis Structures
 - Future Generation Passenger Compartment
 - Joining Technology
- Use the results to evaluate predictive methodologies.

- Expand knowledge of fatigue performance of AHSS, especially that of joints.
- Study Base Metal Fatigue (Completed).
- Study Spot Weld Fatigue (Completed):
 - Study AHSS spot welds with conventional steels as a baseline.
 - Evaluate the impact of gages, weld parameters, adhesives.
 - Evaluate spot weld performance and validate predictive methodologies.
- Study GMAW (MIG)/Laser Weld Fatigue (Ongoing):
 - Study grades, gages, welding parameters, eccentric loading, coatings and prestrain effects using conventional steels as a baseline.
 - Evaluate weld performance and predictive methodologies.

Phase 1A

Material combinations

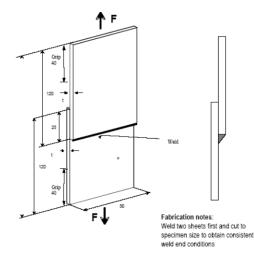
- DP590 GA-DP590 GA
- SAE1008 HR-SAE1008 HR
- HSLA 420 HR-HSLA 420 HR
- DP600 HR-DP600 HR
- BORON-BORON
- DQSK GA-DQSK GA
- TRIP780 GI-TRIP780 GI
- DP780 GI-DP780 GI
- DP590 GA SAE1008 HR
- DP600 HR-SAE1008 HR
- TRIP780 GI-SAE1008 HR

Specimen geometries

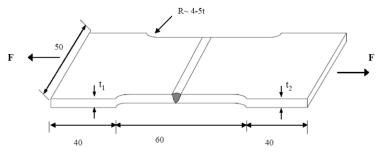
- Single lap shear
- Double lap shear
- Butt weld
- Start-Stop
- Perch mount

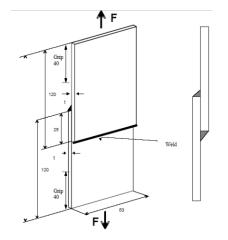
www.a-sp.org

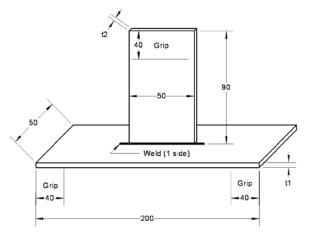
Phase 1B

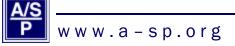

- Material combinations
 - HSLA420 HR-HSLA 420 HR
 - DP590 GA-DP590 GA
 - BORON-BORON
 - DP780 GI-DP780 GI
 - BORON-HSLA 420 HR

Specimen geometries


- -Single lap shear
- Double lap shear
- Start-Stop


WELD FATIGUE TEST COUPONS

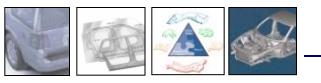

Single Lap Shear test specimen


Butt Weld Test specimen

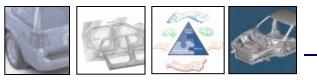


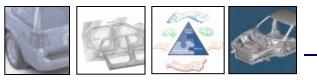
Double Lap Shear Test specimen

Perch Mount Test specimen

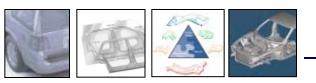


- Completed Phase 1A of the GMAW weld fatigue test program.
- Began Phase 1B of the GMAW weld fatigue test program.
- Began work on a variability study to identify sources of test results variation and key geometric parameters of weld specimens from both Phase 1A and Phase 1B fatigue test programs.




- SAE paper on variability of weld geometry on spot weld fatigue – April 2009 (accepted for publication in SAE Transactions Journal).
- SAE paper on effect of weld process on variability of weld geometry on MIG welded joints April 2009.
- SAE presentation and paper on weld fatigue of MIG welded joints April 2010.

- SUMMARY
- Representative experimental data sets available for:
 - Base materials
 - Spot welds
 - Adhesively bonded and weld-bonded joints
 - MIG welds
 - Laser welds
- Confirmed fatigue analytic methodologies' work.
- Complete project by September 2010, no current plans for additional work.



Strain Rate Characterization

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2010 DOE Merit Review

Timeline

- Start 10/2001
- End 03/2009
- 100% Complete

Budget

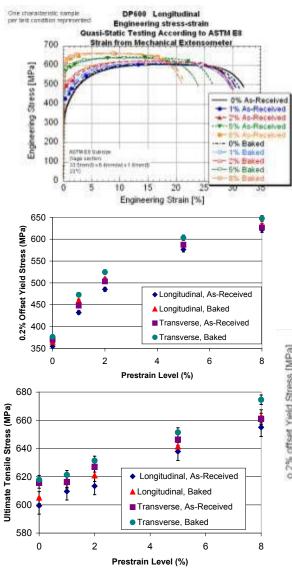
- Total Project Funding
 - DOE \$406K
 - Cost Share \$261K
- Funding for FY08
 - DOE \$91K
- Funding for FY09
 - DOE \$34K

Barriers

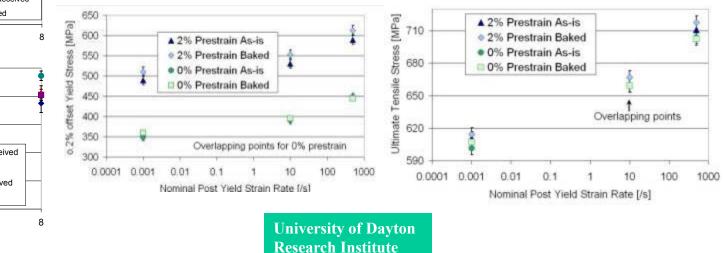
- Experimental test method to characterize rate dependent properties.
- Experimental data base of rate dependent AHSS properties.
- Modeling technology to replicate crash results with AHSS.

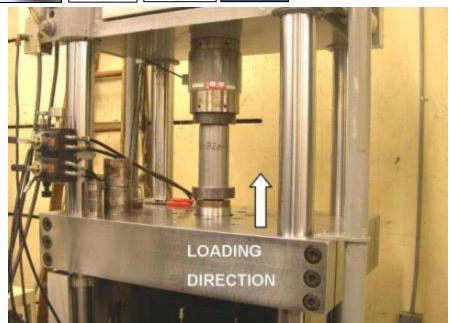
Partners

- Oak Ridge National Laboratories
- University of South Carolina
- University of Dayton Research Institute
- Los Alamos National Laboratories

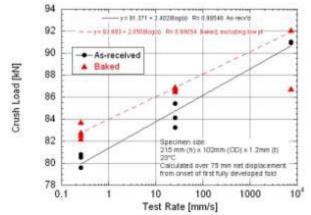


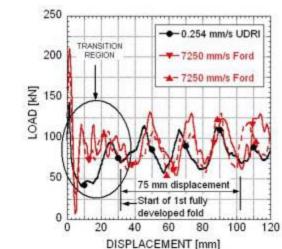
- Develop new experimental setups for characterization of the strain rate sensitivity of AHSS and characterize the materials.
- Develop a new, robust spot weld finite element formulation for modeling the spot weld separation and failure mode as a function of impact, welding conditions and materials.
- Develop experiments to characterize the bake hardening effect of DP steels at high strain rates.





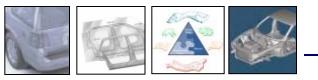
- The most significant improvements in YS and UTS came from pre-strain and increased rate.
- Baking after pre-strain tends to improve (1.8 6.5%) YS in DP600 across rates.
- The effect of baking after pre-strain overshadowed by material variability for DP780 – Bake-Hardening effect is not significant.


www.a-sp.org

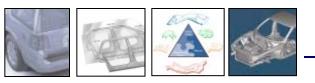


Effect of Bake-Hardening

 Hydroformed Tubes saw ~3% improvement in average crush load and energy absorbed after baking.


- 1. S. Simunovic, P. Nukala, J. Fekete, D. Meuleman & M. Milititsky; "Modeling of Strain Rate Effects in Automotive Impact"; SAE World Congress, 2009, Detroit, MI, SAE Paper: 2003-01-1383
- 2. S. Simunovic, J.M. Starbuck, R. Boeman, D. Meuleman, P. Nukala; "Characterization of Strain and Strain Rate Histories in High-Strength Steel during Asymmetric Tube Crush"; MS&T Conference, New Orleans, LA, 2004
- 3. S. Simunovic, J.M. Starbuck, R. Boeman, P. Nukala, J. Fekete, M. Milititsky, G. Jacob; "High Strain Rate Characterization of Advanced Automotive Materials"; SAE World Congress, Detroit, MI, 2004
- 4. S. Simunovic, J.M. Starbuck, R. Boeman, D. Meuleman, P. Nukala; "Characterization of Strain and Strain Rate Histories in High-Strength Steel during Tube Crush", SAE World Congress 2005
- 5. S. Simunovic, P. Nukala; "Modeling of Strain Rate History Effects in BCC Metals"; Third MIT Conference on Computational Fluid and Solid Mechanics, p 495-7, 2005
- 6. S. Simunovic, J. M. Starbuck, P. Nukala; "Characterization and Modeling of Strain and Strain Rate Histories in Steel Structures during Impact"; International Auto Body Conference, IABC 2006, Society of Automotive Engineering (SAE), 2006
- 7. S. Simunovic, J. M. Starbuck, P. Nukala; "Characterization of Strain and Strain Rate Histories in Steel Structures during Impact"; 2007 SAE World Congress, Detroit, MI, 2007
- 8. S. Simunovic, J. M. Starbuck, K. Wang & P. Nukala; "Characterization of Strain and Strain Rate Histories in HSS Structures during Progressive Crush"; MS&T Conference, Detroit, MI, 2007
- 9. Y. J. Chao, Kim, Y. Z. Feng, S. Simunovic, K. Wang & M. Kuo; "Dynamic Failure of Resistance Spot Welds"; SAE World Congress, 2009, Detroit, MI, SAE Paper 2009-01-0032
- 10. S. I. Hill, S. H. Kuhlman, K. Wang, J. Belwafa & X. Chen; "Bake-Hardening Effect of Dual Phase Steels"; SAE World congress 2009, Detroit, MI SAE2009-01-0796

- Strain rate data available for AHSS steels and being used to model crash events.
- Improved material models for AHSS available for analysis.
- Future direction of weld modeling is under discussion.
- Project completed February 2009.



Advanced High-Strength Steel Joining

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2010 DOE Merit Review

Timeline

- Start 10/2001
- End 09/2010
- 85% Complete

Budget

- Total Project Funding
 - DOE \$1,357K
 - Cost Share \$780K
- Funding for FY09
 - DOE \$190K
- Funding for FY10
 - DOE \$264K

www.a-sp.org

Barriers

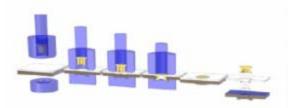
 Understanding forming characteristics of AHSS.

Partners

- AET Integration Inc.
- EWi/Ohio State University
- Roman Engineering Services

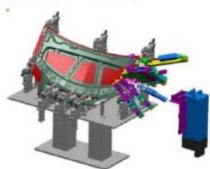
- Provide welding and joining expertise to support A/SP project teams in developing lightweight automotive body structures.
- Supplement the existing welding and joining technical knowledge with applied research to facilitate an increased use of AHSS.
- Utilize A/SP research data to prepare industry weldability and weld quality acceptance standards.

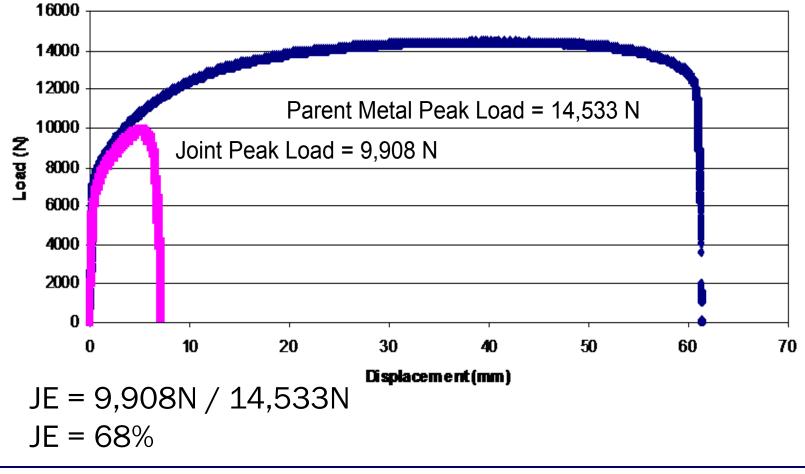
- Resistance Spot Welding Team originally formed in 2000.
- Project Team scope and name revised in 2002 to reflect Joining Technologies rather than just resistance spot welding.


2006	2007	2008	2009	2010	2011	4
Joint Efficiency and Weld Repair – Phase III						_
GMAW and LASER Weldability Characterization Standard						
Joint Efficiency and Weld Repair – Phase II						
Weld Bonding Simulation (Between Weld Buckling)						
Joint Efficiency and Weld Repair – Phase I.						
Hot Cracking and LME Study						
GMAW Finite Element Modeling (E-Weld Predictor)						
Weld Bond Adhesive Guidelines						
GMAW Chassis Design Guideline						
AHSS Material Weldability Characterization Procedure						
Validate and Publish RSW Starting Weld Schedules						
RSW Schedules Finite Element Modeling						

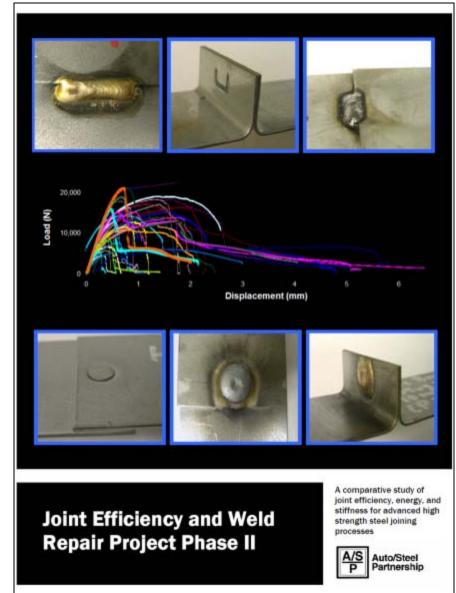
📕 www.a-sp.org

JOINT EFFICIENCY PROJECT APPROACH





and provide the

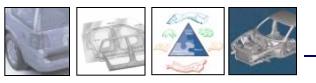


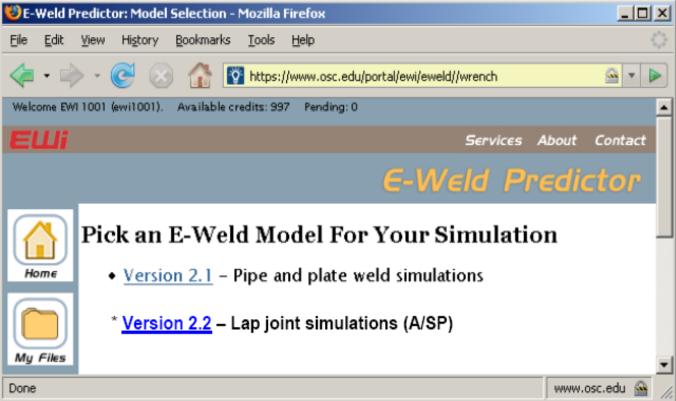
• Joint efficiency was calculated as the peak load of the joint divided by the peak load of the parent metal.



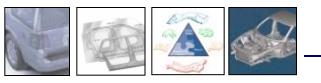
JOINT EFFICIENCY PROJECT APPROACH


Material	Coupon Configuration	Joining Process	Peak Load (N)	Joint Efficiency	Normalized Energy	Normalized Stiffness
DP780						
LS						
		Arc Braze (25mm lap fillet) LS	11,339	29.0%	0.5%	77.8%
]		GMAW (AWS D8.8M - 25mm fillet) LS	19,562	50.0%	1.8%	86.7%
]		Laser (25mm lap) LS	20,633	52.8%	2.9%	88.7%
		Laser Braze (25mm lap fillet) LS	8,075	20.7%	0.2%	81.6%
Mild Steel						
LS						
]		Arc Braze (25mm lap fillet) LS	7,855	54.0%	3.1%	77.0%
		GMAW (AWS D8.8M - 25mm fillet) LS	9,908	68.2%	7.9%	81.3%
		Laser (25mm lap) LS	10,139	69.8%	9.8%	83.0%
		Laser Braze (25mm lap fillet) LS	6,657	45.8%	1.0%	73.0%

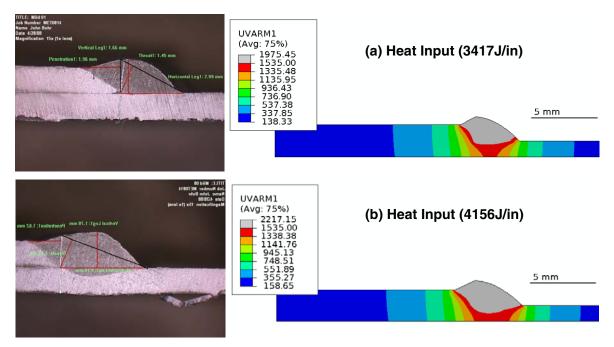

- Allows the user to display metrics by selecting processes, materials, and joint configurations.
- Provides quick reference and comparisons of all test data.
- Included in the member tool kit.
- Phase 2 (58 processes evaluated).

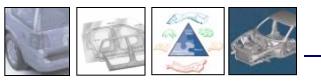


- Develop a computer application to allow automotive OEMs and suppliers the ability to compare the manufacturing costs of various automotive welding and joining processes to support process selection decisions.
- Review and compare technical information for competing joining technologies obtained from Phase 1 and Phase 2 Joint Efficiency Projects along with process cost information.



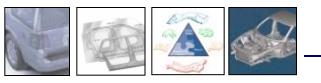
- Develop a demonstration web-portal on typical automotive gas metal arc welding (GMAW) lap-joints.
- Validate the FEA predicted results with experimental results on typical automotive GMAW lap-joints.



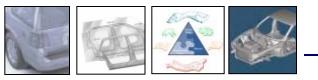


- Good agreement between experimental results and predicted leg lengths.
- Under predicted penetration.

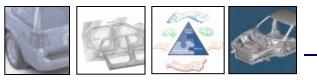
Factors affecting the prediction accuracy included issues with thermal material properties for AHSS and the amount of model calibrations.

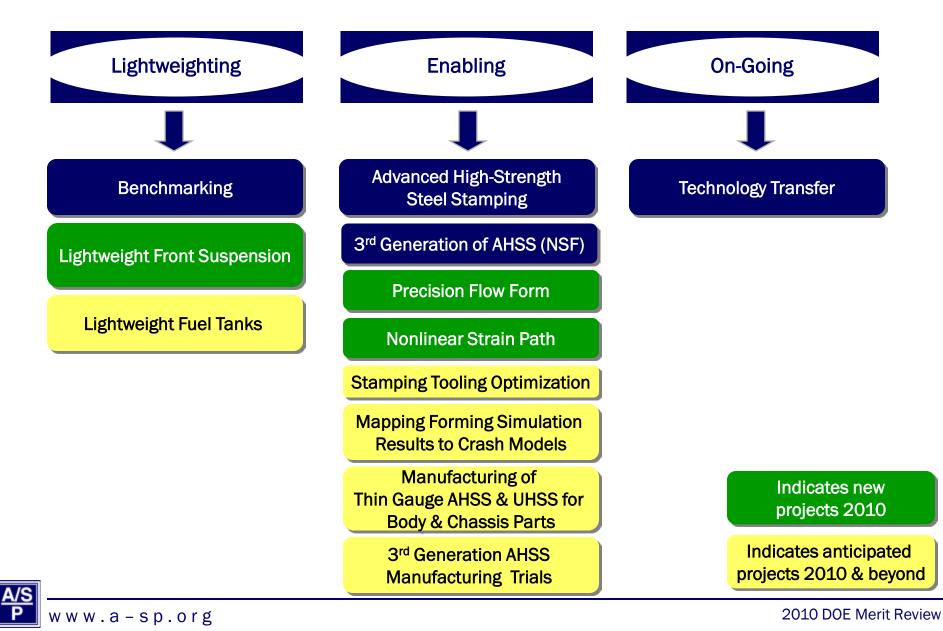


- Completed Phase II of a comprehensive study on joint efficiency.
- Created and published results of a Between Spot Weld Buckling Project:
 - Influence of weld pitch
 - Influence of structural adhesive
- Supported development of an automotive industry AHSS resistance spot weld material characterization (AWS D8.9M:200X).
- Created and published Weld Bond Adhesive Guidelines.
- Created and published Starting Resistance Spot Weld Schedules.



- Presentations and exhibit:
 - Great Designs in Steel (May 2009).
 - International Auto Body Congress (November 2009).
 - AWS Fabtech (November 2009).
 - Sheet Metal Welding Conference (May 2010).
- Members Only
 - Joint Efficiency Phase 2 Members Only toolkit (CD).
- Public
 - Joint Efficiency Phase 2 Project Results (CD).
 - Liquid Metal Embrittlement and Hot Cracking Sensitivity Project Results (CD).





- Project to be completed by September 2010.
- Potential future project work being developed under ASP310 Joining Strategy Steering Committee.

2010+ A/SP PROJECT PORTFOLIO

