Advanced Soft Switching Inverter for Reducing Switching and Power Losses

Jason Lai

Virginia Polytechnic Institute and State University

June 10, 2010

Project ID: APE011

1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Outline

- Overview
- Objectives
- Milestones
- Approaches
- Accomplishments
- Future Work
- Summary

Overview

Timeline

- Start Sep 2007
- Finish Sep 2010
- 75% Complete

Budget

- Total project funding
 - DOE \$1,587,448
 - Contractor \$1,126,358
- Funding received in FY09
 - \$454,460
- Funding received in FY10
 - \$482,722

Barriers

- Barriers addressed
 - Inverter Cost
 - Inverter Weight and Volume
 - Inverter Thermal Management
- Target
 - Achieve efficiency >99% to allow the use of silicon devices at 105° coolant operating condition

Partners

- National Institute of Standards and Technology – Modeling and Simulation
- Powerex Soft switch module packaging
- Azure Dynamics Dynamometer and vehicle testing

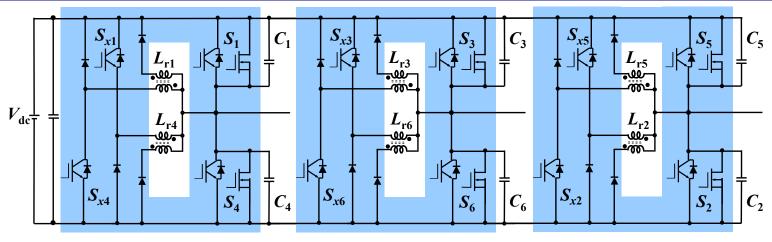
Objectives

- Overall Objective: To develop advanced soft switching inverter for traction motor drives to support the following DOE targets
 - 105°C coolant temperature by designing the junction temperature <125°C
 - 94% traction drive system efficiency by designing the inverter efficiency >98%
- Year 3 Objectives
 - Demonstrate the integrated soft-switching inverter for invehicle testing
 - Develop the third generation soft-switching module for cost and integration considerations

Milestones

System level modeling simulation Develop variable-timing control Develop gen-1 soft-switch module Perform failure mode effect analysis Characterize gen-1 module Test inverter with dyno and calorimeter Develop gen-2 soft-switch modules Evaluate EMI performance Design controller and gate drive circuits Integrate inverter for in-vehicle testing Develop gen-3 soft-switch modules Perform in-vehicle testing Volume production cost analysis

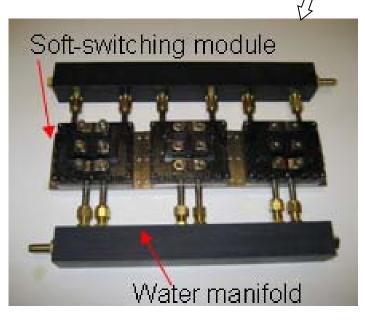
5



Year 3

Year 1


Year 2


Approach – Separate Auxiliary Switching Circuits to Avoid Magnetizing Current Circulation

Liquid-cooled soft-switching modules

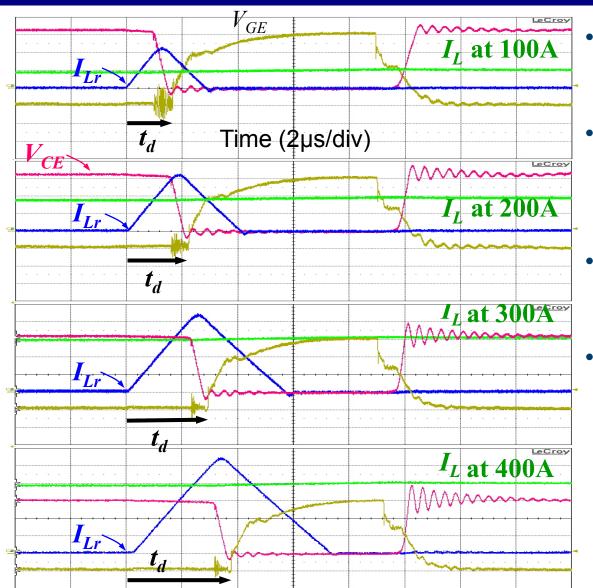
Circuit diagram of a threephase soft-switching module based inverter

Approach

- Develop a variable timing controlled coupledmagnetic based soft-switching inverter for loss reduction.
- Develop a hybrid switch based soft-switching circuit to reduce the conduction voltage drop at light load.
- Develop low thermal impedance module with integrated heat sink for high temperature operation.
- Develop a highly integrated soft-switch module for low cost inverter packaging.
- Modeling and simulation for design optimization.
- Test the soft-switching inverter with existing EV platform and dynamometer for EMI and efficiency performance verification.

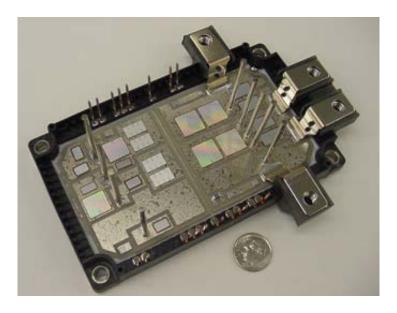
Approach – Calorimeter Setup for Precision Efficiency Test

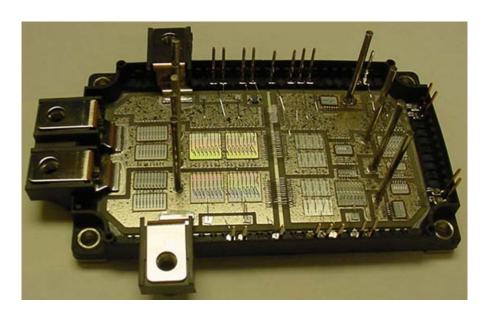
Calorimeter with reference chamber in foreground and inverter chamber in back


$$P_{inv-loss} = P_{heater} \cdot \frac{\Delta T_1}{\Delta T_2} = P_{heater} \cdot \frac{T_{out} - T_{mid}}{T_{mid} - T_{in}}$$

The high temperature heat exchanger and pump hooked into the back of the calorimeter,

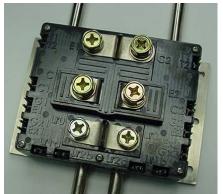
Accomplishment – Variable Timing Soft Switching over a Wide Load Current Range





- During turn-on, V_{GE} turns on after V_{CE} drops to zero \rightarrow zero turn-on loss
- During turn-off, V_{CE} slowly rises after current drops to zero \rightarrow turn-off loss reduction
- Variable timing delay t_d →
 achieve soft-switching at all current conditions
- Bonus slow d*v*/d*t* that will result in low EMI emission
 - Turn-on $dv/dt = 600V/\mu s$
 - At 100A Turn-off dv/dt = 500V/μs
 - At 200A Turn-off dv/dt = 1kV/μs

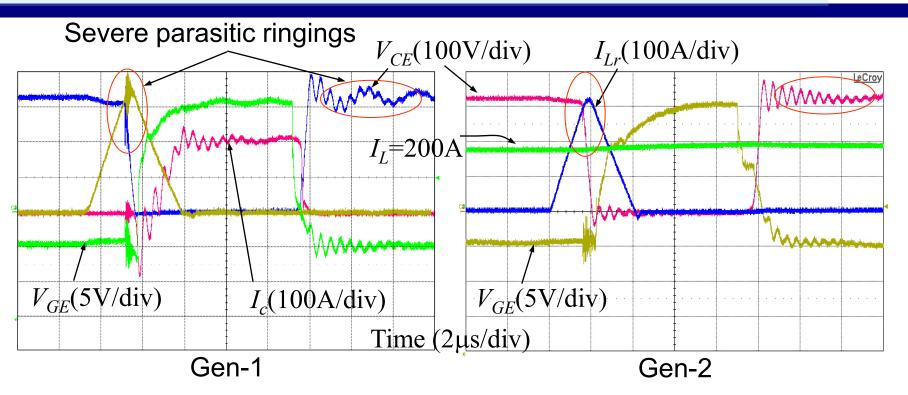
Accomplishment – Gen-2 Soft-Switching Module with Standard Low-Profile Design


(a) Before wirebond

(b) After wirebond

- Same electrical design as the Gen-1 module
- Low profile with power pins next to the chips significant parasitic reduction
- Standard baseplate flexible with air- or liquid-cooled system

Accomplishment – Significant Cost Reduction with Gen-2 Module


C2 +2	Gen 1	Gen 2			
	Direct Liquid Cooled	Stand	Direct Liquid Cooled		
	Low Volume	Low Volume	High Volume	High Volume	
Materials	\$545.87	\$236.31	\$98.25	\$114.25	
Labor	\$360.00	\$90.00	\$35.00	\$35.00	
Total	\$1,222.92	\$440.52	\$179.89	\$201.49	

Gen 2 Cost Advantages

- Less expensive terminals
- Standard flat copper baseplate
- Use high volume parts
- Easier to assemble automate

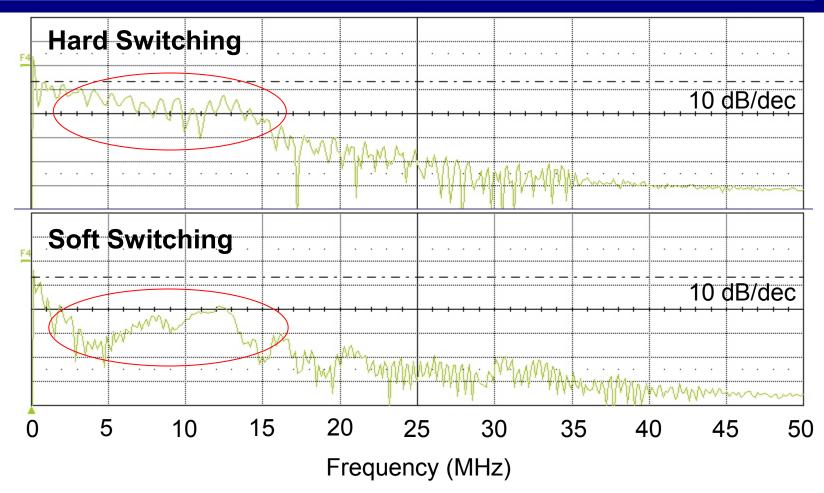
Accomplishment – Parasitic Inductance **Reduction with Gen-2 Module**

- Gen-2 module reduces total loop parasitic inductance from 91nH to 19nH.
- During turn-on, Gen-1 resonant current I_{Lr} and device voltage V_{CF} present high frequency parasitic ringing, but not Gen-2.
- During turn-off, Gen-1 device voltage V_{CE} has an overshoot voltage of **75V**, as compared to Gen-2's **50V**. In addition to the test setup induced high frequency ringing, Gen-1 also presents a sub-harmonic oscillation. 12

Accomplishment – Complete Gen-2 Inverter with Significant Volume Reduction

Gen-1 Soft-Switching Inverter

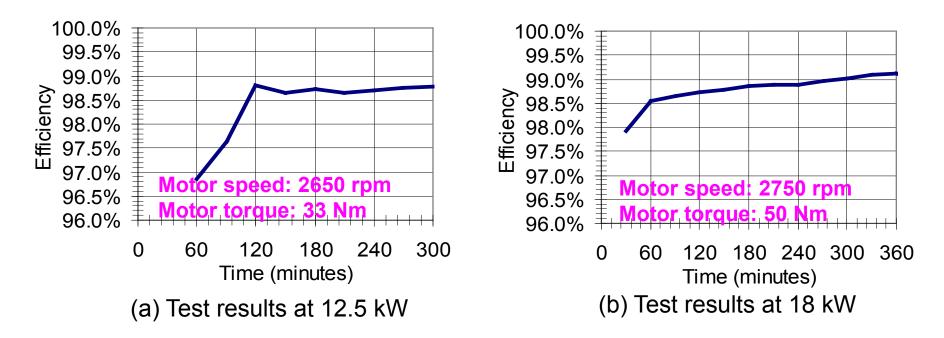
- Direct cooled module no heat sink is required, but a custom-made water manifold is needed
- Large resonant inductor for initial conservative design



Gen-2 Soft-Switching Inverter

- Air- or liquid-cooled heat sink → ease of mounting
- Reduced-size resonant inductor and integrated design
- Significant volume reduction to fit Azure inverter chassis.

Accomplishment – Common Mode EMI Reduction with Soft-Switching



- FFT results show measured common mode (CM) EMI at the inverter output
- Soft-switching shows about 10 dB reduction across the entire frequency range, up to 50 MHz and more than 20 dB reduction between 3 and 6 MHz range 1

Accomplishment – Calorimeter Tested Efficiency Plots over a Long Period of Time

- Using integrated module with light-weight water manifold for the fullversion soft-switching inverter.
- Calorimeter chamber inlet and outlet temperatures stabilized after 6hour testing. Chamber temperature differential was 1.6 °C under 0.3 GPM flow rate.
- Efficiency exceeded 99% at full speed, 33% load torque condition.

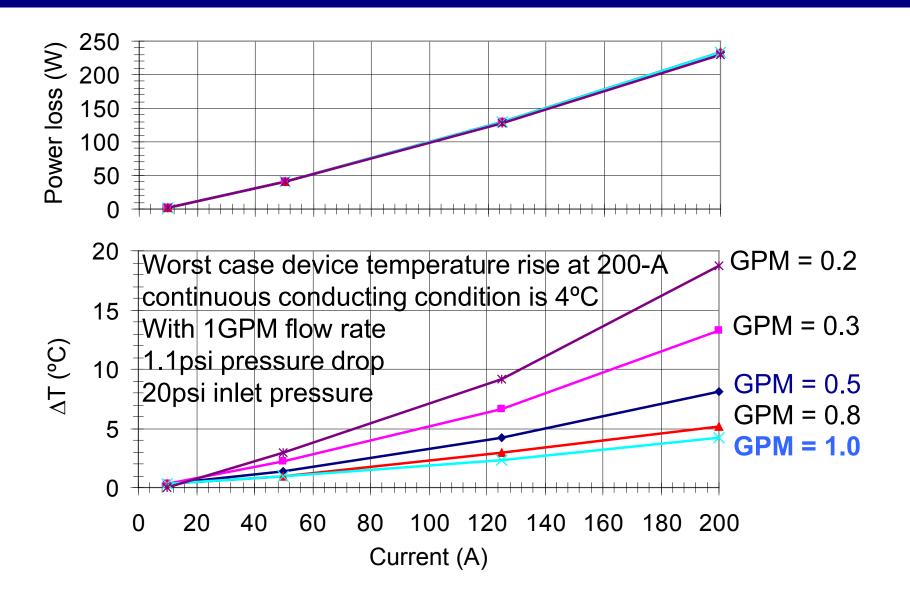
Accomplishment – Soft Switched Inverter Efficiency Measurement using Calorimeter

	Inverter Input (DC	Inverter Heat	Inverter		Speed		
GEN-1 SOFT	Link) Power Level	Loss	Efficiency	Dyno	Torque		
SWITCHED					2750rpm		
INVERTER	17.5kW	192W	98.90%	Azure AC55	50Nm		
					2650rpm		
	12.5kW	208W	98.30%	Azure AC55	33Nm		
TEST RESULTS					1600rpm		
	27kW	311W	98.80%	Azure AC90	140Nm		
					-3800rpm		
	-11.6kW (regen)	202W	98.30%	Azure AC90	30Nm		
	Inverter Input (DC	Inverter Heat	Inverter		Speed		
HARD	Link) Power Level	Loss	Efficiency	Dyno	Torque		
SWITCHED					1300rpm		
INVERTER	15.4kW	950W	93.80%	Siemens	107Nm		
CALORIMETER					2400rpm		
TEST RESULTS	19.7kW	709W	96.40%	Siemens	75Nm		
					3400rpm		
	23.7kW	626W	97.40%	Siemens	62Nm		

643W

-15.6kW (regen)

-3000rpm


44Nm

Siemens

96.00%

Accomplishment – Temperature Rise of Main Device Q1/M1 under Different Coolant Flow Rates

Future Work

- Efficiency and EMI Testing with Gen-2 Soft-Switching Inverter
- Perform In-Vehicle Testing with Soft-Switching Inverter
- Complete More Efficient and Lower Cost Gen-3 Modules
- Manufacturability and Cost Analyses

Preparation for In-Vehicle Testing

Summary

- Variable timing control is successfully developed for high efficiency over a wide load range. The Gen-1 soft-switching inverter successfully demonstrates 99% efficiency, which was verified with calorimeter measurement.
- Worst-case junction temperature rise is less than 4°C even with just 1-GPM coolant flow rate.
- Soft switching shows 10dB EMI reduction across entire frequency range and >20dB reduction between 3 and 6MHz
- Gen-2 soft-switching module can be cooled by either air or liquid. As compared to Gen-1 module, the Gen-2 softswitching module demonstrates
 - Parasitic inductance reduction by 79%
 - Cost reduction by 84%