2010 DOE Hydrogen Program and Vehicle Technologies Program AMR Oral Presentations and Posters

Low Cost Titanium – Propulsion Applications

Curt Lavender Pacific Northwest National Laboratory

> Dr. Yong-Ching Chen Cummins Inc.

Dr. Vladimir Moxson ADMA Products Inc.

June 10, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID# PM 006

Overview

Timeline

Project start date: Project end date: Percent complete: October 2008 October 2012 20%

Budget

Total project funding:

- DOE \$475 K
- Cost Share 75%

Funding FY10: \$300 K

Barriers

- Material limits
- Lack of investment in improving the traditional reciprocator platform
- Cost of advanced materials and their processing

Partners

Industrial CRADA Participant: Cummins Inc.

- Dr. Yong-Ching Chen

Supplier Development:

ADMA Products Inc.

- Dr. Vladimir Moxson Support:

- Dr. PK Mallick University of Michigan at Dearborn

Objectives of Project

Reduce the cost to manufacture titanium components for reciprocating and rotating applications

- Evaluate the capability of an emerging low cost titanium powder metallurgy production technology for use in fatigue rated applications
 - Currently, high cost wrought processed titanium is used in low volume high performance propulsion systems
 - By reducing the cost of titanium and the associated processing the performance benefit can be applied to more engine platforms thereby impacting US fuel consumption
- Assess the efficiency gain possible with increased use of titanium in propulsion systems

Deliverables

- Strain-controlled fatigue data from press/sintered and press/sintered/forged Ti6Al4V fabricated from TiH₂ powder
 - Now added press/sinter/HIP
- An initial assessment of the efficiency gains possible with titanium used in rotating and reciprocating components
- Rotating beam fatigue from press/sintered and rod-rolled Ti1Al8V5Fe fabricated from TiH₂ powder

Technical Approach

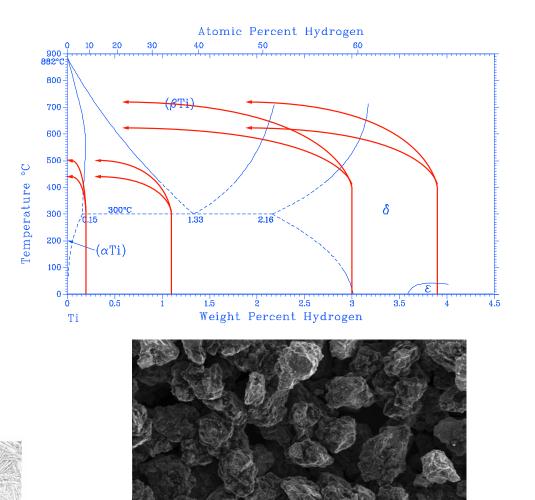
Technology Development

- This is a highly leveraged activity applying technology developed by a Department of Energy Global Initiative for Proliferation Prevention (DOE/GIPP) project performed in the Ukraine
 - Fabricate test bars from low cost TiH₂ powder using low cost high yield powder metallurgy methods
 - Press, sinter
 - Press, sinter and forge
 - Press, sinter and rod-roll
 - Fatigue test samples machined from test bars using a strain controlled fatigue test that has been used to qualify titanium materials in propulsion systems
 - Develop cost model for process deployment

Technology Deployment

- The test methods are to be selected from procedures used by Cummins Inc. to qualify titanium materials and should be readily applicable to speed up the qualification
- Test bars are to be fabricated at the commercialization partner of the DOE/GIPP project, ADMA Products Inc.
 - ADMA has been producing approximately 35,000 lbs of TiH₂ powder per year in the Ukraine
 - More vessels are readily available
 - US production under development

Technical Progress


Fabrication of high bars by rod rolling was completed

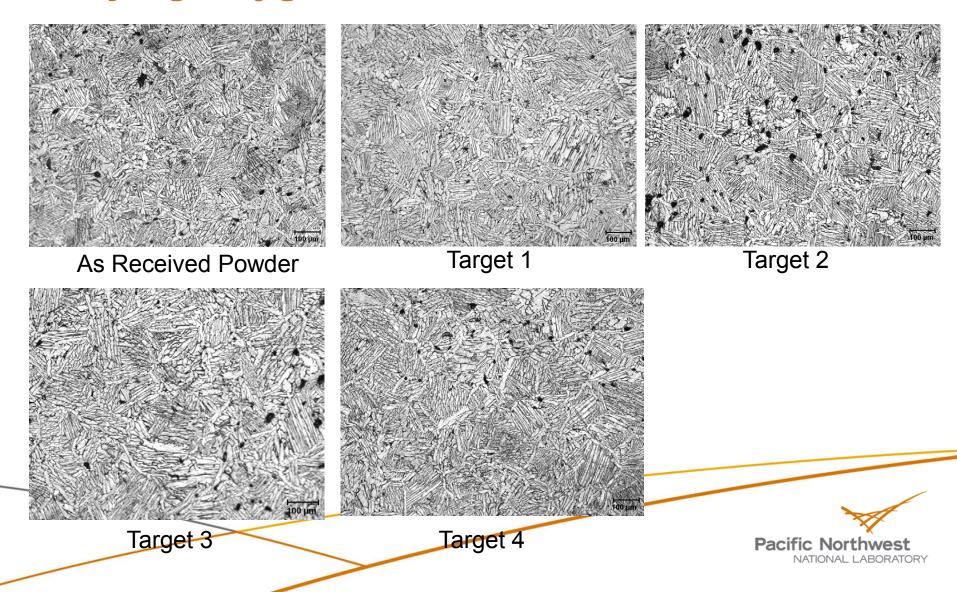
- Heat treatment studies and tensile test characterization was completed
 - RBF samples to be fabricated
- Ti6Al4V
 - Encountered an issue with oxygen content of starting powder
 - New vessels used for powder production produce lower oxygen content powder good
 - New task added to the work to understand the effect of oxygen
 - Encounter a delay due a sintering change at ADMA that resulted in low density
- Identified a source for modeling of titanium impact on efficiency
 - Will be letting a contract to Dr. PK Mallick University of Michigan at Dearborn

Low Cost Titanium Hydride Processing

- TiH₂ Powder direct press and sinter to reduce machining loss
 - Greater than 96% dense
 - Fine grain sizes observed in TiH₂ pressings may meet the fatigue requirements
 - Will have application in other components i.e. valves etc...

200 µm

Fine as-sintered grain size

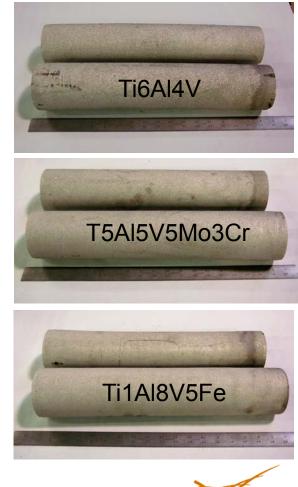

Press and Sinter Bars from TiH₂ Powder

- Fabricated approximately 70 bars for RBF and tension testing to determine interstitial content
- Average bulk density greater than 98%
 - Core density is lower new sintering paramters at ADMA focused on extrusion that did not require full density
 - Sintering will be adjusted

Microstructure of Sintered T6Al4V with varying Oxygen and Iron content

Preliminary Tensile Test Results

									Strength,	ksi
								Oxygen		
Composition	С	0	Ν	Н	Fe	AI	V	equivalent	0.2% Offset	UTS
As-Received	0.001	0.192	0.022	0.0006	0.083	6.25	4.3	0.26976	96	117
Target 1	0.009	0.289	0.021	0.0006	0.130	6.18	4.4	0.37503	98	120
Target 2	0.009	0.176	0.022	0.0006	0.320	6.04	4.3	0.3028	96	117
Target 3	0.010	0.227	0.024	0.0004	0.200	6.3	4.3	0.33552	99	121
Target 4	0.010	0.249	0.023	0.0004	0.340	6.27	4.4	0.38275	100	124


Preliminary data

- 0.2% offset strengths are lower than the desired 115,000 psi
 - Does not correlate with O-equivalent
- Results will be analyzed to predict new composition that meets 115,000 psi.
- As received implies only alloyed for AI and V
- Further analysis revealed less than 94% dense cores
 - HIPing will be performed and then re-test and RBF

Semi-finished bar stock

- There has been some effort in beta alloy development from other emerging low cost titanium powders however all have used CIP/sinter and extrusion or vacuum hot pressing and extrusion
 - For the automotive industry round bar is a more useful semi-finished product and is most cost-effectively produced by rod-rolling
- Selected 2 beta alloys and Ti6Al4V to be consolidated by CIP/Sinter and rod rolling
 - Ti6Al4V to be used to compare consolidation process with extrusion
 - T5AI5V5Mo3Cr not a low cost alloy but under development and will provide process baseline for beta alloys
 - Ti1Al8V5Fe a low cost alloy developed in 1950's and dropped due to Fe segregation that occurs during melt
- Powder
 - Ti64 made by ITP powder; Hunter Fines and TiH₂
 - Ti5553 and Ti185 made by TiH₂
- Rod Rolling Trials completed
 - Ti6Al4V and Ti1Al8V5FeBillets sintered to greater than 97% dense
 - Ti5553 sintered to 92% resulted in excessive cracking
 - Rolled to 16mm

90 mm Rod Rolling Billets

Rod Rolling

Successful rod rolling of solid state processed Ti1Al8V5Fe beta alloy

Excessive cracking in Ti6Al4V that was ultimately corrected

Ti1Al8V5Fe; Ti6Al4V Rods

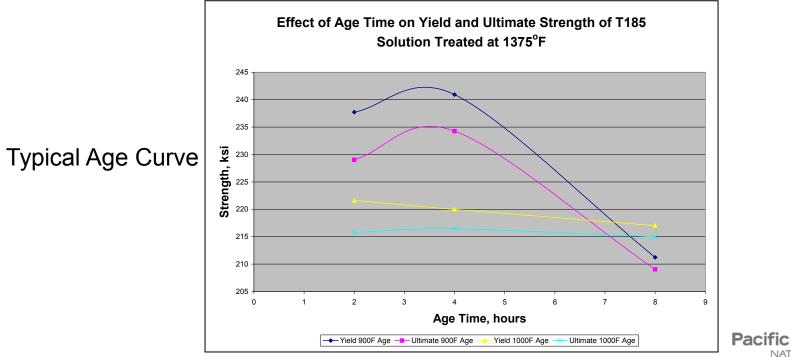
- Ti1Al8V5Fe High strength fastener alloy
 - Good candidate for springs 1400MPa; low shear modulus
 - High oxygen tolerance
- Ti6Al4V "workhorse" alloy

Virtually 100% yield from starting billet (prior to peel)

Tensile Properties

Billet and As-Rolled Properties

- Improvement in strength and ductility with rolling
- TiH₂ starting powder


	Ultimate		
	Tensile	Yield	
Condition/Alloy	Strength	Strength	Elongation
	(ksi)	(ksi)	(%)
As-Sintered billet/Ti185	124	104	0.4
As-Sintered billet/Ti64	110	101	4.4
As-Rolled Ti185	210	205	1.2
As-Rolled Ti64	165	150	16.6

Tensile Properties of Ti1Al8V5Fe

Ti185 can benefit from heat treatment like other beta alloys

- Precipitation of fine alpha
- In our peak condition the alloy exhibited
 - 230 ksi, 240 ksi, yield and ultimate strength, respectively with 8% elongation
 - Elongation is on the lower side; but not uncommon for high strength beta alloys such as "C" and 10-2-3
- First iteration on the alloy and we added 0.32 weight percent oxygen to bring our total oxygen to 0.5

Future Work

- HIP tensile and RBF bars for interstitial determination
- Fabricate test bars and machine fatigue samples from down-selected interstitial content
 - ADMA will blend/press/sinter and PNNL will forge
- Perform strain controlled fatigue tests
- Complete engine efficiency analysis and perform analysis of efficiency improvement with titanium
 - Identify additional applications

Summary

A titanium powder developed during a DOE/GIPP project appears to produce a product with mechanical properties sufficient for a propulsion application from a very low-cost press and sinter process

- Could replace costly ingot processed forgings
 - Eliminates yield loss associated with ingot forging
 - Greater than 50% cost reduction predicted from yield savings alone
- Unique properties are developed during sintering of TiH₂
 - High density critical to fatigue initiation
 - Fine-grain size import to reduce fatigue crack propagation
- Encountered lower than expected interstitial content in powder
 - Performing interstitial study based on Fe and O
 - Found low tensile strength in initial tests
 - ADMA made a small adjustment in sintering
 - HIP will be used to complete study
 - A test matrix of sintering time will be completed to assure 98+% density
- Cummins Inc. has identified a relevant application using the Ti6Al4V alloy and provided the requirements to adequately assess the performance of the press/sinter/forged bars produced from TiH₂
- The impact of titanium on engine efficiency will be modeled

