Proactive Strategies for Designing Thermoelectric Materials for Power Generation

PNNL / ONAMI Joint Project on Advanced TE Materials & Systems Project ID #PM014

Dr. Terry J. Hendricks, P.E.¹ Professor Mas Subramanian²

¹Hydrocarbon Processing Group, Energy & Environment Directorate Pacific Northwest National Laboratory Corvallis, OR

> ²Department of Chemistry Oregon State University Corvallis, OR

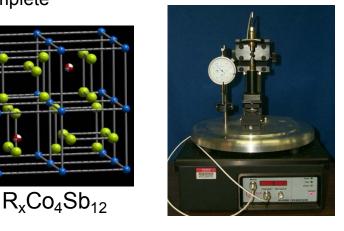
Office of Vehicle Technologies 2010 Annual Merit Review

Oregon State

10 June 2010 Pacific Northwest "This presentation does not contain any proprietary, confidential," or otherwise restricted information" Proudly Operated by Battelle Since 1965

Agenda

- Overview Timeline, Budget, Technical Barriers, & Collaborations
- Objectives
- Milestones
- Technical Approach
- Accomplishments
- Collaborations & Coordination
- Future Work
- Summary
- Publications/Presentations
- Critical Issues



Proactive Strategies for Designing Thermoelectric Materials for Power Generation - Overview

Timeline

- Project Start Date: 15 December 2008
- Project End Date: 15 December 2010
- ➢ 50% Complete

Budget

- Total FY 2009 Project Funding \$260K
- Total FY 2010 Project Funding \$260K

OVT Barriers – Advanced Combusion R&I Solid State Energy Conversion

- Improve heavy truck efficiency to 50 percent by 2015
- Achieve stretch thermal efficiencies of 55% in heavy-duty engines by 2018
 - Fuel Economy Increases of 10% over 2010
 - Improve Cost-Effectiveness & Performance of Exhaust Heat Recovery
- Achieve at least a 17 percent on-highway efficiency of directly converting engine waste heat to electricity
- Improve Light-Duty & Commercial Vehicle Fuel Efficiency up to10%
- High-Performance Waste Energy Recovery Materials to Integrate into Advanced Engines
 - Methods for Maintaining Fuel Economy at Light-Load

Partners

- Lead: Pacific Northwest National Laboratory
- Partner: Oregon State University, Corvallis, OR
- > ONAMI

National Waste Energy Recovery Magnitude of the Opportunity – Why Are We Interested?

60-70% Energy Loss in Most of Today's Processes

Transportation Sector

Oregon State

- Light-Duty Passenger Vehicles + Light-Duty Vans/Trucks (SUVs)
 - 2002: 129.8 billion gallons of gasoline
 - 2004: ~135 billion gallons of gasoline
 - ~ 4.5 quads/yr exhausted down the tail pipe
 - ~ 5.5 quads/yr rejected in coolant system

Heavy-Duty Vehicles

- 2002: 29.8 billion gallons of diesel
- 2004: 32 billion gallons of diesel
 - ~1.45 quads/yr exhausted down the tail pipe
 - ~1 quad/yr rejected in coolant system (~1 quad)

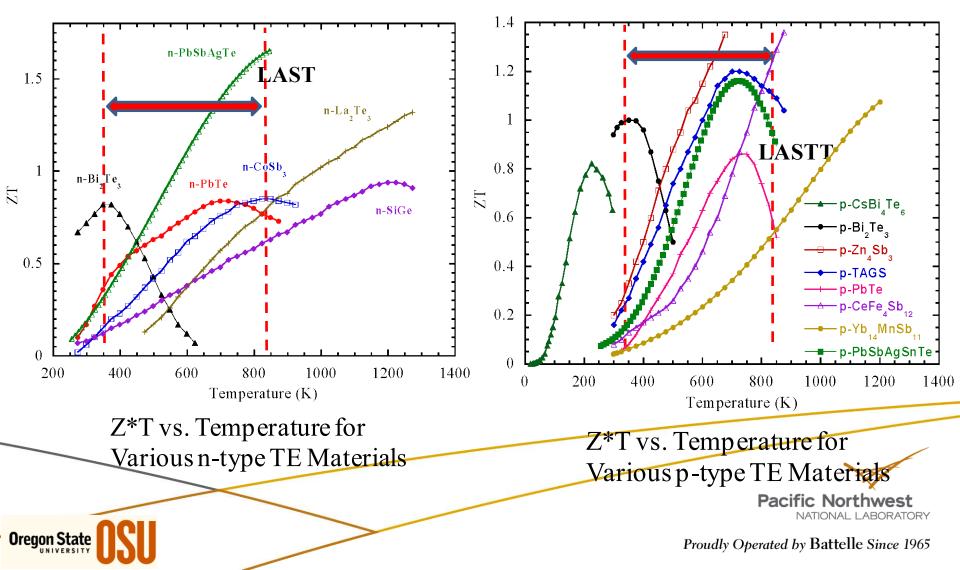
Hybrid Electric Vehicles

Move Toward Electrification – Micro, Mild, and Full Needs for Power Generation Needs for Electric-Driven Cooling

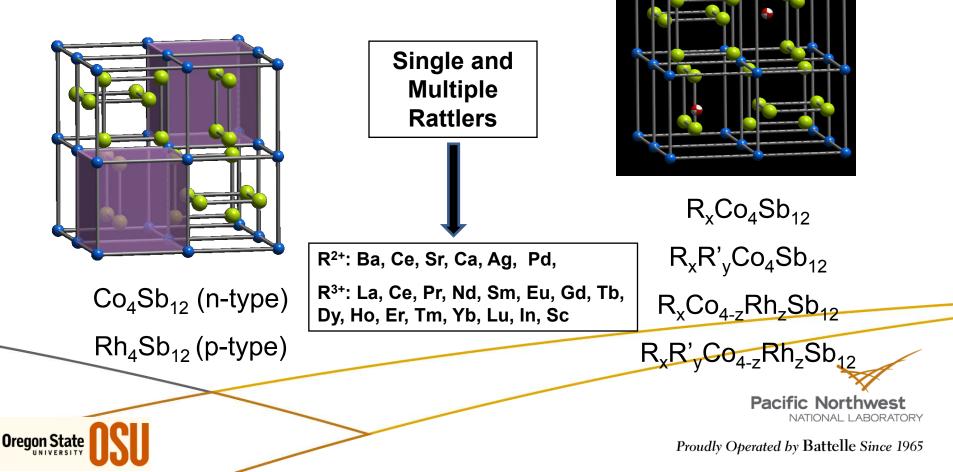
Project Objectives

- Develop new high-performance n-type and p-type thermoelectric (TE) material compositions to enable:
 - 10% fuel efficiency improvements from waste energy recovery in advanced lightduty engines and vehicles.
 - Heavy truck efficiencies to 50% by 2015
 - Stretch thermal efficiencies of 55% in advanced heavy-duty engines by 2018.
 - Achieve 17% on-highway efficiency of directly converting engine waste heat to electricity
- Improve cost-effectiveness and performance of exhaust heat recovery in light- and heavy-duty vehicles.
- Develop TE materials with operational temperatures as high as 800 K to 900 K.
- Advanced n-type and p-type bulk TE materials that have peak ZT (Figure of Merit xTemperature) of approximately 1.6 or higher at 600 K
- Minimize temperature-dependency in properties to achieve high performance in the 350 K to 820 K range.

Pacific Northwest


Schedule / Milestones

Month/Year	Milestones:
Dec. 2009–Dec. 2010	P-type and n-type Thermoelectric Development & Testing. Optimize Compositions for TE Performance. Measure TE Properties (Seebeck Coefficient, Electrical Resistivity, & Thermal Conductivity). On-going throughout the year due to third-party validation.
July 09	Select p-type TE Materials for Structural Testing. Criteria Will Be Selecting the Best TE Materials Properties (ZT vs. T.). Continue Refining n-type $In_{0.2}Ce_{0.15}Co_4Sb_{12}$ for Reproducibility
Dec. 2009–Dec. 2010	Continue Measuring & Categorizing Room Temperature Structural Properties of p-type & n-type TE Materials. Measure E, v, CTE.
June 2010	Measure High Temperature Structural Properties of n-type TE Materials.
September 2010	Measure High-Temperature Structural Properties of p-type TE Materials
December 2010	Develop and Measure TE Couple Performance Using Selected p- type / n-type TE Materials. Measure I-V Curves at Various Hot- Side / Cold-Side Temperatures.


Technical Approach

Power Generation in Light-Duty & Heavy-Duty Applications Requires TE Materials in the 350 K to 820 K Range

Strategies in Designing *n*-type and *p*-type Skutterudites: R_xR_y 'Co_{4-x} M_xSb_{12}

- Multiple Rattler Systems Dramatically Reduce Thermal Conductivity While Maintaining Electrical Conductivity & Seebeck Coefficient
 - Single Rattler Systems
 - Multiple Rattler Systems

Technical Approach

- Proactive, Systematic Investigation of Dual- & Tri-Rattler Skutterudites
 - Refine n-type Materials, Characterize at Higher Temperatures & Transition to TE Couple
 - Systematically Develop p-type Materials with Performance Similar to n-type Levels
- TE Property Measurements @ OSU Laboratories
 - Seebeck Coefficient Measurements vs. T
 - Electrical Conductivity Measurements vs. T
 - Thermal Conductivity Measurements vs. T
- Engaging Third-Party Validation
 - ORNL

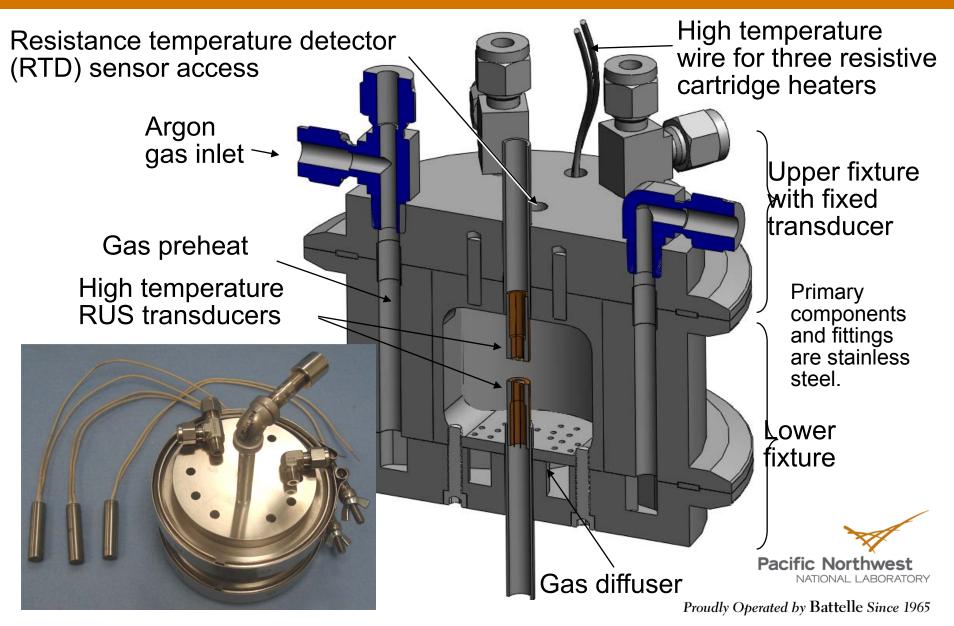
Oregon State

- Structural / Thermal Property Measurements @ PNNL
 - Resonant Ultra Sound Techniques (E, v) Up to 300 °C
 - CTE Up to 400 °C
 - Mechanical Strength @ Room Temperature
- Recognition That Structural Properties Just as Important as TE Properties
- PNNL to Characterize System-Level Benefits of Material Compositions in Waste Energy Recovery Applications (See Supplemental Slides)
- Demonstrate High-Performance TE Couples for Transition to Waste Energy Recovery Applications

Project Accomplishments

Structural Property Measurements

- Measured Coefficient of Thermal Expansion & Determined Elastic Material Properties Over Elevated Temperatures
 - Measured Coefficient of Thermal Expansion
 - Modified Existing RUS System for Material Property Measurement at Elevated Temperatures
 - Currently Measuring E and v at Multiple Temperatures Spanning Room Temperature to 300 °C
 - RUS Systems
 - Room Temperature Shown Right
 - High-Temperature System in Next Charts



Specimen between Transceivers

Pacific Northwest NATIONAL LABORATORY

Elastic Moduli Estimate by Resonant Ultrasound Spectroscopy: High Temperature Test Chamber

Elastic Moduli Estimate by Resonant Ultrasound Spectroscopy: High Temperature Transducers

30-MHz, lithium niobate crystal (2.0-mm diameter active center)

Vespel ® cylinder (6.6-mm outer diameter)

Inner cavity filled with high temperature epoxy (Aremco-Bond 526N-ALOX-BL-A & B)

Stainless steel tube

Transducer lead wires

Silver epoxy (EPO-TEK® E2116-5) High temperature coaxial cable (not shown)

RUS High Temperature Measurement System

120 Volts AC Before Opening Disconnet Power

RUS Transducer

Reference (Fused Silica RPP) in Thermal Chamber

Thermal Chamber -

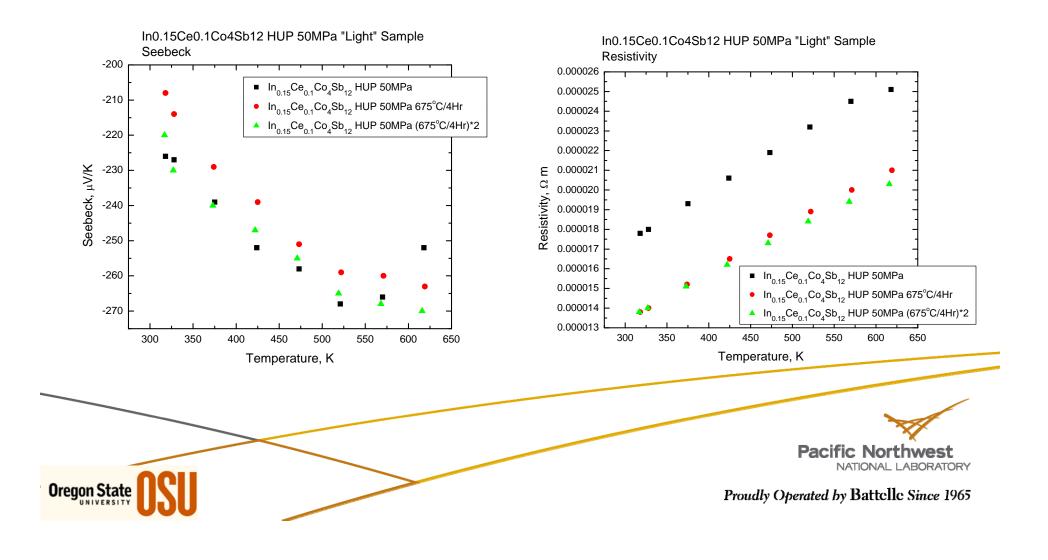
Assess to Specimen and Transducers

Temperature

Controller

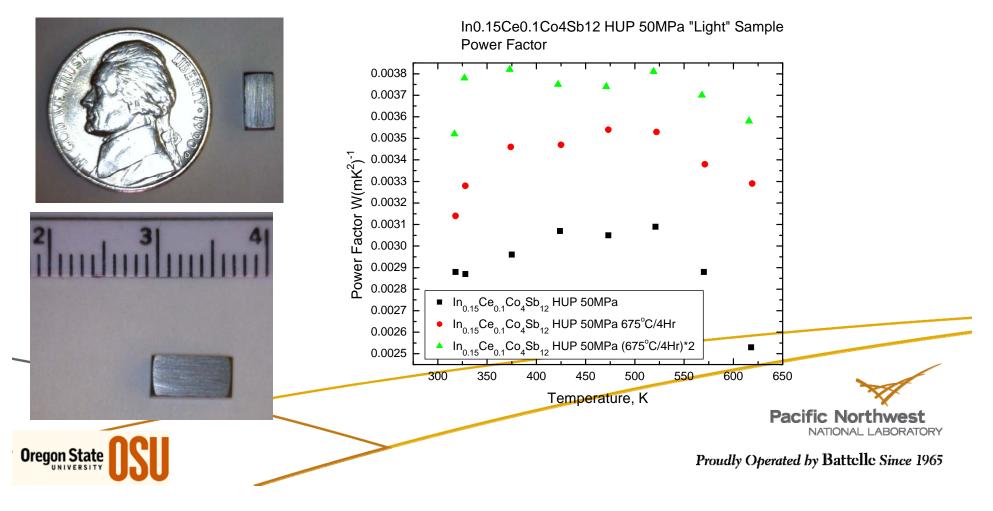
RUS /

Quasar RI-2000

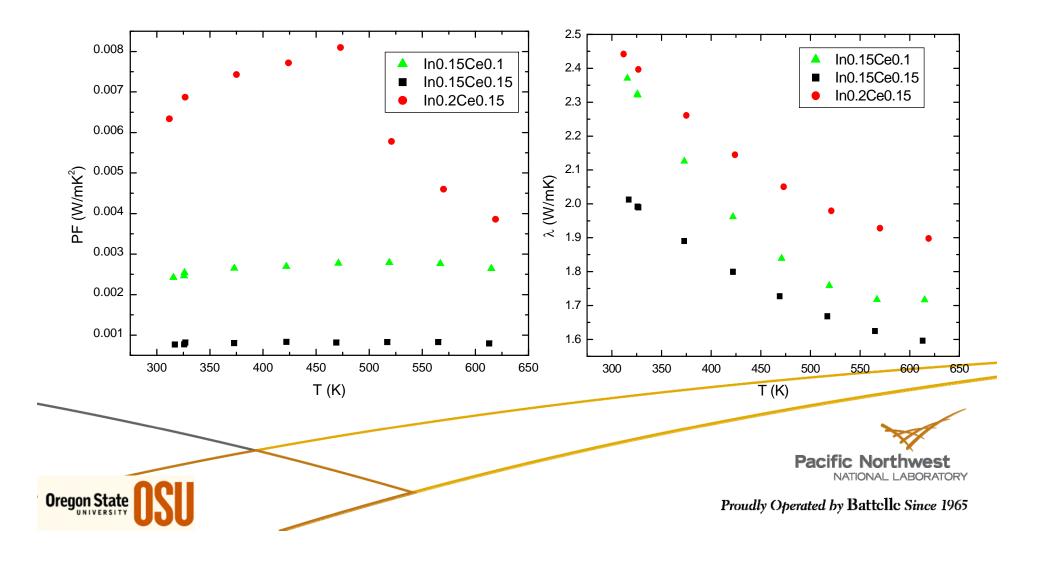

Argon Gas Feed

Power Switch to Thermal

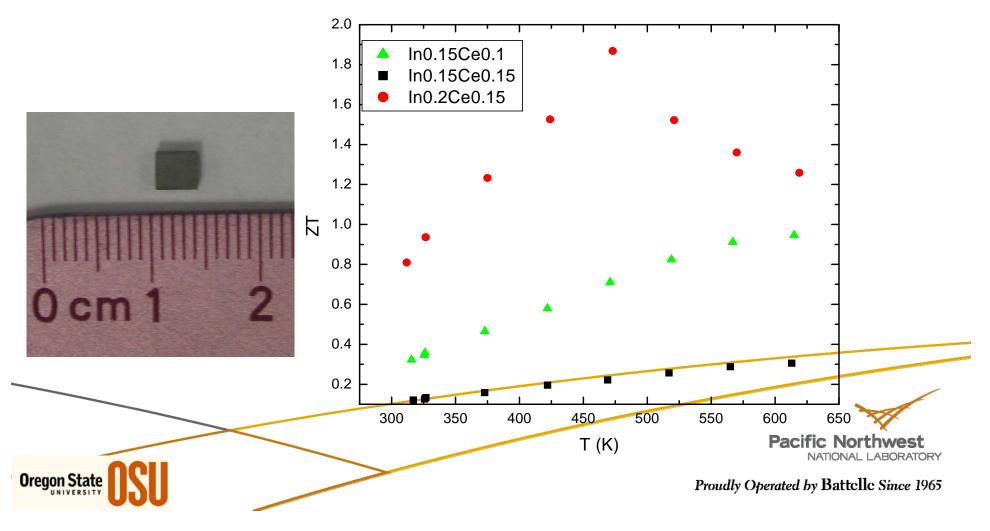
Cartridges


Computer Control of RUS System

In_xCe_yCo₄Sb₁₂ Created Using Sintering & Hot-Pressing Processes
Moderate Hot-Pressing Pressures (50 MPa)



In_xCe_yCo₄Sb₁₂ Created Using Sintering & Hot-Pressing Processes
Moderate Hot-Pressing Pressures (50 MPa)


- High Power Factors Exhibited in In_{0.15}Ce_{0.1}Co₄Sb₁₂ Compounds
 - Fairly Insensitive to Temperature From 350 550 K

- Ultimately Led to ZT ~ 1.5 1.6 at 425 525 K for In_{0.2}Ce_{0.15}Co₄Sb₁₂ Compounds
- Once Again Bulk Materials Easily Integrated into TE Device

- Ultimately Led to ZT ~ 1.5 1.6 at 425 525 K for In_{0.2}Ce_{0.15}Co₄Sb₁₂ Compounds
- Once Again Bulk Materials Easily Integrated into TE Device
- Must Monitoring MicroCracking

n-Type Thermoelectric & Structural Properties

Specimen Label and Comments	Temperature (ºC)	ρ, density (g/cm³)	υ, Poisson's ratio	<i>E</i> , Modulus of Elasticity (10 ¹¹ N/m ²)	rms error (%)
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LBL1 2-5-2010		7.303	0.215	1.348	0.12
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LBL1 3-9-2010	20.6	7.303	0.204	1.344	0.33
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – LBL2 2-9-2010		7.264	0.204	1.326	0.49
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – LBL2 3-10-2010	21.5	7.264	0.200	1.319	0.40
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – PNNL3-G1B 1-21-2010		7.315	0.181	1.339	
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – PNNL3-G1B 2-05-2010 Repeat 1-21-2010		7.315	0.185	1.339	
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – PNNL3-G1B 3-25-2010	20.8	7.315	0.194	1.358	0.78
In _{0.2} Co ₄ Sb ₁₂ – NM211_3-5-10 3-30-2010 - BNW-60608 – 15		5.694	0.185	0.666	0.34
C					

n-Type Thermoelectric & Structural Properties

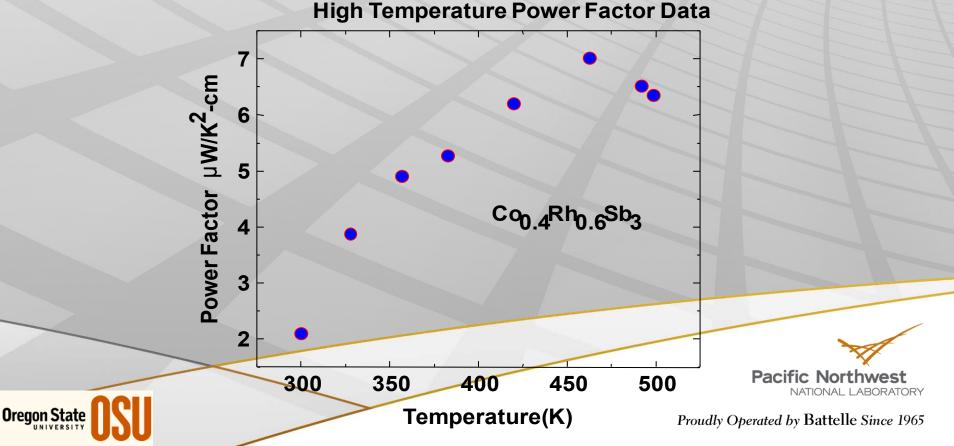
Specimen Label and Comments	ρ, density (g/cm³)	υ, Poisson's ratio	СТЕ (/*С)	<i>E</i> , Elastic Modulus (10 ¹¹ N/m²)	ZT (@ 600 K)
CoSb ₃ (literature)		0.222		1.396	0.6
La _{0.75} CoFe ₃ Sb ₁₂ (literature)		0.228		1.365	
CoSb ₃ (PNNL)		0.226	12.8x10 ⁻⁶	1.398	
CoSb ₃ (PNNL)		0.225		1.391	
In _{0.1} Co ₄ Sb ₁₂ (PNNL)		0.227	8.37x10 ⁻⁶	1.396	
Y _{0.1} In _{0.1} Co ₄ Sb ₁₂ (PNNL)		0.247	9.26x10 ⁻⁶	1.413	0.82
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – PNNL3 1-21-2010 chip off corner	~7.314	0.181		1.339	
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ – PNNL3 2-5-2010 REPEAT of 1-21- 2010	~7.314	0.185	8.61x10 ⁻⁶	1.339	0.95
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LB1 2-5-2010	7.304	0.215	8.56x10 ⁻⁶	1.348	0.95
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ - LB2 2-9-2010	7.264	0.204	8.26x10 ⁻⁶	1.326	0.95
In _{0.2} Ce _{0.15} Co ₄ Sb ₁₂ - 03161035 4-13-2010 (Preliminary Data)	7.019	0.105	8.11-8.34x10 ⁻⁶	1.066	1.4 (1.5-1.6 @ 475K

Resonant Ultrasound Spectroscopy (E, v) Measurements Thermal Cycling Effects

- Thermal Fatigue Cycling Showing Good Stability
 - > 200 Cycles

Oregon State

- ➢ 40 °C to 400 °C
- Good Indicator of Reliability in Future TE Modules


	Temperature	Before Thermal Cycling		After Thermal Cycling	
	[°C]	Young's Modulus, E X 10 ⁹ [N/m ²]	Poisson's Ratio, v	Young's Modulus, E X 10 ⁹ [N/m ²]	Poisson's Ratio, v
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ (LBL1)	20-22	134.8	0.215	134.4	0.204
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ (LBL2)	20-22	132.6	0.204	131.9	0.200
In _{0.15} Ce _{0.1} Co ₄ Sb ₁₂ (PNNL3-G1B)	20-22	133.9	0.185	135.8	0.194

Pacific Northwest NATIONAL LABORATORY

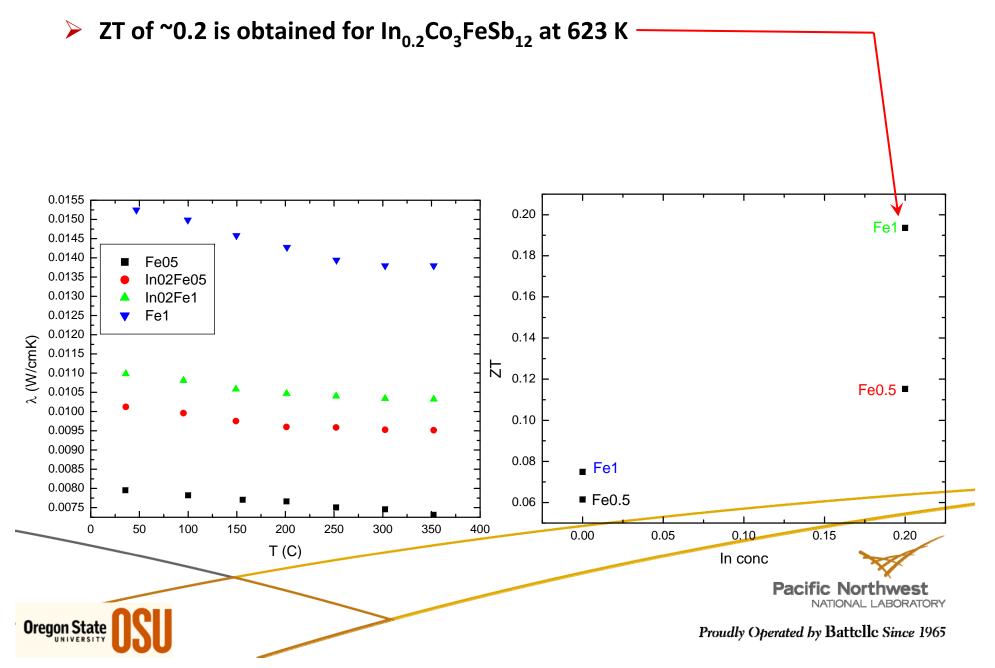
p-Type Co_{1-x}Rh_xSb₃ (without Rattlers): High Temperature Power Factor

Power Factor Temperature Dependency for p-type x= 0.6 sample

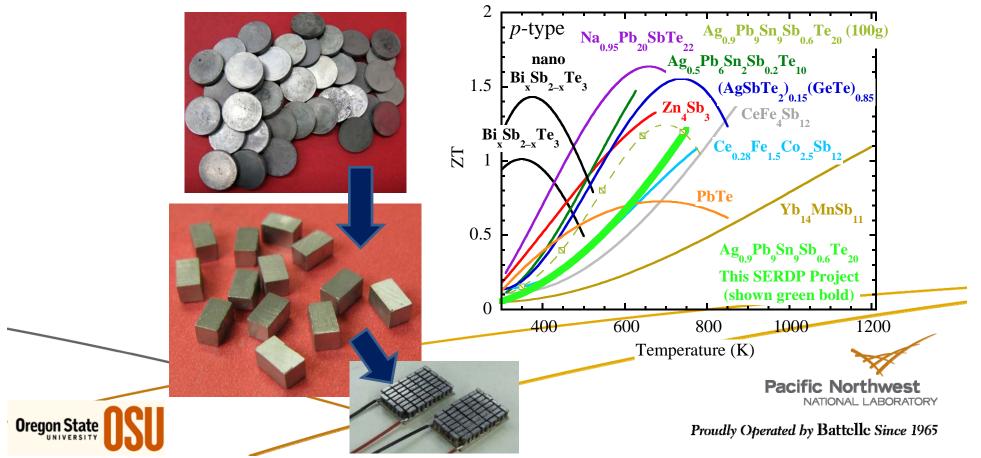
- x = 0.6 was optimum composition
- Higher Power Factor, But Costs Too High as Pointed Out @ 2009 OVT Merit Review
- > Reported Last Year, But Work Discontinued Due to Cost & κ

p-Type Skutterudites with High ZT

- p-Type Skutterudites Quite Difficult to Produce
- Very Few Dopents Act as Electron Acceptor from the Co-Sb Conduction Band
- Following Compounds are Guiding Our p-Type Investigations
- Reproducibility of Compounds Below Has Not Been Confirmed


S.No	Compound	ZT	Ref	
1	LaFe _{4-x} Co _x Sb ₁₂	0.9 at 800 K	B. C. Sales, D. Mandrus, and R. K.	
			Williams, Science 272, 1325 (1996)	
2	CeFe _{4-x} Co _x Sb ₁₂	0.7 at 800 K;	JP. Fleurial, T. Caillat, A. Borshchevsky,	
	x < 3 p-type	1.2-1.4 at 900 K	D. T. Morelli, and G. P. Meisner, in	
	x > 3 n-type		Proceedings of the 15th International	
			Conference	
			on Thermoelectrics	
			(1996) 91	
3	Ce _{0.28} Fe _{1.5} Co _{2.5} Sb ₁₂	1.1 at 750 K	Tang, Xinfeng; Zhang, Qingjie; Chen,	
			Lidong; Goto, Takashi; Hirai, Toshio.,	
			Journal of Applied Physics (2005),	
			97(9) 093712/1-093712/10	
4	Ba _{0.27} Fe _{0.98} Co _{3.02} Sb ₁₂	0.9 at 750 K	Tang, X. F.; Chen, L. D.; Goto, T.; Hirai,	
			T.; Yuan, R. Z., Journal of Materials	
			Research (2002), 17(11), 2953-2959	
5	Ca _{0.18} Ce _{0.12} Fe _{1.45} Co _{2.55} Sb ₁₂	1.2 at 750 K	Tang, Xinfeng; Li, Han; Zhang, Qingjie;	
			Niino, Masayuki; Goto, Takashi.Journal	
			of Applied Physics (2006), 100(12),	
			123702/1-123702/8	Pacific Northwest

Proudly Operated by Battelle Since 1965


NATIONAL LABORATORY

p-Type Skutterudites To Date

p-Type Skutterudites To Date

- > ZT of ~0.2 is obtained for $In_{0.2}Co_3FeSb_{12}$ at 623 K
- p-Type LAST Materials Could be Combined with n-Type In-Ce Based Skutterudites to Demo TE Couple
 - > Well-Developed Thermoelectrically & Structurally (Tellurex Corp., 2009)
 - Demonstrated in TE Modules (Tellurex Corp., 2009)
 - ZT = 1.2 @ 750 K

Collaboration and Coordination with Other Institutions

Partners

- Oregon State University, MicroProduct Breakthrough Institute
- > Oregon Nanoscience & Microtechnology Institute
- Oak Ridge National Laboratory Validation Testing
- Technology Transfer
 - Tellurex Corporation
 - BSST LLC
 - ZT Plus

Oregon State

Coordination with OVT Waste Heat Recovery & Utilization Project

Pacific Northwest NATIONAL LABORATORY

Future Work & Path Forward

Optimize Synthesis Procedures for n-type (In,R)Co₄Sb₁₂ Compositions

- Good Reproducibility
- Fabricating Highly Dense Samples
- > Introduce Single & Multiple "Rattlers" (In, Rare Earth) in $Fe_xCo_{4-x}Sb_{12}$,
 - (i.e., $In_y Fe_x Co_{4-x}Sb_{12}$; $Ce_y Fe_x Co_{4-x}Sb_{12}$) For Better *p*-Type Materials
- Characterize TE Properties & Validate with Third Party Testing (ORNL)
- Structural Property Measurements
 - Young's Modulus, E(T)
 - Poisson's Ratio, v(T)
 - > CTE(T)
 - Mechanical Strength

Transition to TE Couples & Measure Performance

Results

- n-type Skutterudite TE Materials Showing Excellent TE Properties (See Publication)
- p-type Skutterudite TE Materials Are More Challenging
- Structural & CTE Testing On-Going; Good Structural Stability Upon Thermal Cycling
- High Temperature Structural Test Equipment Operational & Calibrated
- Challenges
 - Batch to Batch ZT Reproducibility and Consistent Properties
 - Sintering to High Dense Samples
 - Continue Evaluating Stability Issues During Thermal Cycling

Benefits

- System-Level Analyses Show OSU/PNNL Skutterudites Superiority (See Supplements)
 - Higher Performance Than TAGS / PbTe Combinations & Other Skutterudite Combinations
- TE Conversion Efficiencies Can Be High
 - > 9-10% in Automotive Applications in Preferred TE Design Regions
 - 11-12%+ in a Direct-Fired APU System
 - Potential Superiority to Other Materials in Automotive TE Systems
- Bulk TE Materials for Easy Integration into TE Module / System Designs aci

NATIONAL LABORATORY

We are What We Repeatedly do. Excellence, Then, is not an Act, But a Habit.

Aristotle

Acknowledgement

We sincerely thank Jerry Gibbs, Office of Vehicle Technologies Propulsion Materials, for his support of this project.

Questions & Discussion

Pacific Northwest NATIONAL LABORATORY

